知识点一:整数
1、整数的范围
整数包括自然数和负整数,或者说整数由正整数、零、负整数组成。
(1)自然数
自然数的意义:我们在数物体的时候,用来表示物体的个数0,1,2,3,4,5,…..叫做自然数。自然数的个数是无限的,没有最大的自然数。
自然数的基本单位:任何非“0”的自然数都是若干个“1”组成,所以“1”是自然数的基本单位。1也是最小的一位数。
“0”的含义:“0”表示一个物体也没有,在计数中起占位作用,表示该数位上没有计数单位。“0”还可以表示起点、分界点等。“0”是最小的自然数。
自然数的两种意义:如果一个自然数用来表示物体的个数就叫基数;如果一个自然数用来表示物体排列的次序就叫序数。
(2)正数
正数的定义 以前学过的8、16、200……..这样的数叫做正数。
正数的写法和读法 正数前面也可以加“+”号,例如:+8读作:正八。“+”号一般可以省略不写。
(2)负数
负数的定义 像-1、-5、-132……这样的数叫做负数。“一”叫负号。
负数的写法和读法 负数前面加“一”号,例如:-15读作:负十五。数字越大的负数反而越小。
“0”既不是正数,也不是负数。
(4)整数与自然数的联系及区别
自然数全是整数,整数不全是自然数,还包括负整数。
2、整数的读法和写法
数的分级 按照我国的计数习惯,整数从个位起,每四个数位是一级。个位、十位、百位、千位是个级,表示多少个一;万位、十万位、百万位、千万位是万级,表示多少个万位;亿位、十亿位、百亿位、千亿位是亿级,表示多少个亿。
计数单位 整数、小数都是按照十进制写出的数,其中一(个)、十、百…….是整数的计数单位。计数单位是按一定顺序排列的。
数位 各个计数单位所占的位置叫数位。如9357中的“5”在右起第二位,即“5”所在的数位是十位。
位数 指一个数是由几个数字组成,是含有数位个数,如1234占有四个数位,就是四位数。
十进制计数法 十进制是指满十进一,十个一进为十,十个十进位百,十个百进为千……每相邻两个计数单位间的进率都是“十”,这样的计数法叫做十进制计数法。
(2)整数的读法和写法
整数的读法 读整数时,从高位到低位,一级一级地读,读亿级、万级时,按照个级的读法去读,只要在后面加上“亿”字、“万”字就可以了,每一级末尾的“0”都不读出来,其他数位有一个“0”或连续几个“0”都只读一个零。
整数的写法 写整数时,从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。
3、整数大小的比较
比较两个整数的大小,整数数位多的数比较大;整数数位相同的,要从高位依次看相同数位上的数字,相同数位上数字大的数比较大。
知识点二 小数
1、小数的意义
把整数“1”平均分成10份,100份,1000份……这样的1份或几份是十分之几,百分之几,千分之几…….可以用小数来表示。一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几…….
1、小数的读法和写法
小数部分的最高计数单位“十分之一”和整数部分的最低计数单位“一”之间的进率也是十。
(2)小数的读法和写法
读小数时,整数部分按整数的读法读,整数部分是0的读作“零”,小数点读作“点”,小数部分可以顺次读出每个数位上的数字。
写小数时,整数部分按整数的写法写,整数部分是零的要写“0”,小数点点在个位的右下角,然后依次写出小数部分每个数位上的数字。
3、小数大小的比较
比较两个小数的大小,先看它们的整数部分,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就在;十分位上的数也相同的,百分位上的数大的那个数就大……
4、数的改写与求近似数
(1)数的改写与省略这个数某一位后面的尾数写成近似数的方法
为了读写方便,常把较大的数简写成用“万”或“亿”作单位的数。如:2365500=236.55万(改写用“万”作单位的数)。有时还可以根据需要,省略这个数某一的尾数,写成近似数。如:2365500≈237万(省略万位后面的尾数),有时还要求保留一位小数的近似数。如:7.62983≈7.6(保留一位小数)。
取近似数时,常用“四舍五入法”或“进一法”、“去尾法”把一个数某一位后面的尾数省略。
(2) 较大数的“改写”与“求近似数”的异同
相同点 都是改变原数的计数单位。根据要求用“亿”或“万”作单位。
不同点 “改写”只改变数的单位,不改变数的大小,用“=”表示。“求近似数”是用四舍五入法或“进一法”、“去尾法”,既改变了数的单位,又改变数的大小,用“≈”表示。
5、小数的分类与性质
(1)小数的分类
按小数的整数部分是否为0,小数分为纯小数和带小数。
纯小数 整数部分是0的小数叫做纯小数。
带小数 整数部不是0的小数叫做带小数。(纯小数都小于1,带小数都大于或等于1。)
按小数部分的倍数是否有限,小数可以分为有限小数和无限小数。
有限小数 小数部分的位数有限的小数,叫做有限小数。
无限小数 小数部分的位数无限的小数,叫做无限小数。
无限小数又可以分为无限不循环小数和无限循环小数两类。
循环小数 一个无限小数,从小数部分的某一位起,一个数定或几个数字依次不断地重复出现,这样的小数叫做无限循环小数。
循环节 一个循环小数的小数部分依次不断地重复出现的数字,叫做这个循环小数的循环节。
循环小数的简便写法 写循环小数时,为了简便,一般只写出它的第一个循环节,并在循环节的首位和末尾数字上各点一个小圆点。
(2)小数的性质
小数的末尾添上“0”或者去掉“0”,小数的大小不变,(注意:是在“小数的末尾”而不是“小数点的后面”。)
(3)小数点位置的移动引起小数的大小变化
小数点向右移动一位、二位、三位、…….小数就扩大到原来的10倍、100倍、1000倍……小数点向左移动一位、两位、三位……小数就缩小到原来的 、 、 ……
(4)常见的质量单位、人民币单位、时间单位及各单位间的坦率
(5)平年、闰年的判断方法
公历年份是4的倍数的一般是闰年,公历年份是整百数的,必须是400的倍数才是闰年。
知识点三 分数
1、分数的意义 把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。
2、分数单位 把单位“1”平均分成若干份,表示其中一份的分数,叫做分数单位。
3、分数的分类
(1)真分数 分子比分母小的分数叫做真分数。
(2)假分数 分子比分母大或者与分母相等的分数叫做假分数。
4、分数的基本性质 分数的分子一分母同时乘或除以一个相同的数(0除外),分数的大小不变,这叫做分数的基本性质。
5、分数与除法的关系 (1)分数的分子相当于除法的被除数,分数的分母相当于除法的除数,分数线相当于除法的除号。(2)在除法中,除数不能为0,在分数中分母也不能为0,除数、分母为0没有意义。
6、约分 把一个分数化成同它相等,且分子、分母都比较小的分数的过程,叫做约分。
7、最简分数 分子、分母是互质数的分数叫做最简分数。
8、通分 把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
9、分数大小的比较 分母相同的两个分数,分子大的分数比较大;分子相同的两个分数,分母小的分数比较大。
10、分数化小数 根据分数与除法的关系,把分数转化为除法算式,然后计算,就可以得到小数。
分数化小数有两种情况:一般是分子除以分母能除尽,得到有限小数,如 =0.4;一种是分子除以分母除不尽,得到无限小数,如 =0.142857……
11、小数化为分数 原来有几位小数,就在1的的后面写上几个0
母,把原来的小数点去掉作分子,化成分数后,能约分的要约分。
12、分数的基本性质与小数基本性质的关系
分数的基本性质与小数的基本性质是一致的。小数的末尾添上“0”
或者去掉“0”,就相当于把相应的分数的分子、分母同时扩大(或缩小)到原来的10倍(或 )、100倍(或 )、1000倍(或 )……
《空间与图形》部分
1、图形的初步认识
(1)生活中的立体图形
阅读材料:欧拉公式
(2)画立体图形:①由立体图形到视图;②由视图到立体图形
(3)立体图形的表面展开图
(4)平面图形
阅读材料:七巧板
(5)最基本的图形:点和线 ①点和线;②线段的长短比较
(6)角: ①角的比较和运算;②角的特殊关系
(7)相交线:①垂线;②相交线中的角
(8)平行线:①平行线的识别;②平行线的特征
2、多边形
(1)三角形
(2)三角形的内角和、三角形的外角和
(3)瓷砖的铺设
(4)用正多边形拼地板
阅读材料:多姿多彩的图案
课题学习:图形的镶嵌
3、图形的变换
(1)平移:①图形的平移;②图形的特征
(2)旋转:①图形的旋转;②旋转的特征;③旋转对称图形;④中心对称图形
(3)轴对称:①生活中的轴对称;②轴对称的认识;③等腰三角形
阅读材料:(1)剪五角星;(2)对称拼图游戏;(3)Times and dates
(4)位似变换:①图形的放大与缩小;②画相似图形
4、命题与证明
(1)定义、命题与定理
(2)证明及其再认识
5、图形的全等
(1)图形的全等
(2)全等三角形的识别及其性质
(3)尺规作图:①画线段;②画角;③画线段;④画角平分线
6、图形的相似
(1)相似的图形及其特征
(2)相似三角形:①相似三角形的识别;②相似三角形的特征
(3)图形与坐标
7、解三角形
(1)测量
(2)勾股定理
(3)锐角三角函数
(4)解直角三角形
8、平行四边形
(1)平行四边形:①平行四边形的概念;②平行四边形的识别;③平行四边形的特征
(2)矩形:①矩形的概念;②矩形的识别;③矩形的特征
(3)菱形:①菱形的概念;②菱形的识别;③菱形的特征
(4)正方形:①正方形的概念;②正方形的识别;③正方形的特征
阅读材料:四边形的变身术
课题学习:中点四边形
9、圆
(1)圆的基本元素
(2)圆的对称性
(3)圆周角
(4)与圆有关的位置关系:①点和圆的位置关系;②直线和圆的位置关系;③圆和圆的位置关系
(5)圆中的有关计算问题:①弧长和扇形的面积;②圆锥的侧面积和全面积
1、统计
科学记数法:一个大于10的数可以表示成A*10N的形式,其中1小于等于A小于10,N是正整数。
扇形统计图:①用圆表示总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图。②扇形统计图中,每部分占总体的百分比等于该部分所对应的扇形圆心角的度数与360度的比。
各类统计图的优劣:条形统计图:能清楚表示出每个项目的具体数目;折线统计图:能清楚反映事物的变化情况;扇形统计图:能清楚地表示出各部分在总体中所占的百分比。
近似数字和有效数字:①测量的结果都是近似的。②利用四舍五入法取一个数的近似数时,四舍五入到哪一位,就说这个近似数精确到哪一位。③对于一个近似数,从左边第一个不是0的数字起,到精确到的数位止,所有的数字都叫做这个数的有效数字。
平均数:对于N个数X1,X2…XN,我们把(X1+X2+…+XN)/N叫做这个N个数的算术平均数,记为X(上边一横)。
加权平均数:一组数据里各个数据的重要程度未必相同,因而,在计算这组数据的平均数时往往给每个数据加一个权,这就是加权平均数。
中位数与众数:①N个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。②一组数据中出现次数最大的那个数据叫做这个组数据的众数。③优劣:平均数:所有数据参加运算,能充分利用数据所提供的信息,因此在现实生活中常用,但容易受极端值影响;中位数:计算简单,受极端值影响少,但不能充分利用所有数据的信息;众数:各个数据如果重复次数大致相等时,众数往往没有特别的意义。
调查:①为了一定的目的而对考察对象进行的全面调查,称为普查,其中所要考察对象的全体称为总体,而组成总体的每一个考察对象称为个体。②从总体中抽取部分个体进行调查,这种调查称为抽样调查,其中从总体中抽取的一部分个体叫做总体的一个样本。③抽样调查只考察总体中的一小部分个体,因此他的优点是调查范围小,节省时间,人力,物力和财力,但其调查结果往往不如普查得到的结果准确。为了获得较为准确的调查结果,抽样时要主要样本的代表性和广泛性。
频数与频率:①每个对象出现的次数为频数,而每个对象出现的次数与总次数的比值为频率。②当收集的数据连续取值时,我们通常先将数据适当分组,然后再绘制频数分布直方图。
2、概率
可能性:①有些事情我们能确定他一定会发生,这些事情称为必然事件;有些事情我们能肯定他一定不会发生,这些事情称为不可能事件;必然事件和不可能事件都是确定的。②有很多事情我们无法肯定他会不会发生,这些事情称为不确定事件。③一般来说,不确定事件发生的可能性是有大小的。
概率:①人们通常用1(或100%)来表示必然事件发生的可能性,用0来表示不可能事件发生的可能性。②游戏对双方公平是指双方获胜的可能性相同。③必然事件发生的概率为1,记作P(必然事件)=1;不可能事件发生的概率为0,记作P(不可能事件)=0;如果A为不确定事件,那么0〈P(A)〈1。