∫sinxsin(x+ω τ)dx=-(1/2)∫cos(ω τ)dx+(1/2)∫cos(2x+ω τ)dx∫[0,2π] sinxsin(x+ω τ)dx= -cos(ω τ)π + (1/4) [sin(ω τ)-sin(ω τ)]=-cos(ω τ)π
∫[0,2π]sinxsin(x+ω τ)dx=-1/2∫[0,2π][cos(2x+ω τ)-cos(ω τ)]dx=-1/2*[1/2sin(2x+ω τ)-cos(ω τ)x][0,2π]=πcos(ω τ)