cos(π/4+x)=cosπ/4cosx-sinπ/4sinx=(1/√2)(cosx-sinx)=3/5,
cosx-sinx=3√2/5,两边平方得,cos²x+sin²x-2cosxsinx=18/25,
1-sin2x=18/25,sin2x=7/18
sin2x = sin [2(π/4+x) - π/2 ] = - cos 2(π/4+x) = 1 - 2 [ cos 2(π/4+x) ]^2 = 7/25
cos(π/2+2x)=2(cos(π/4+x))^2-1=-7/25
sin2π=-cos(π/2+2x)=7/25
-cos[2(π/4+x)]=-[2cos^2(π/4+x)-1]
sin2x=sin[2(π/4+x)-π/2]=-「2cos^2(π/4+x)-1]=7/25