b=√(c²-a²)记f(a)=a³+ b³=a³+(c²-a²)^1.5,0f'(a)=3a²-3a√(c²-a²)=3a(a-√(c²-a²))令f'(a)=0 --->a=0,a=√2c/2∴f(a)在(0,√2c/2)单调递减,在(√2c/2,c)单调递增f(0)=c³f(c)=c³f(a)min=f(√2c/2)=√2c³/2>c³/2所以c³/2即c³/2