分数
一、选择题:(每小题2分,共20分)
题 号 1 2 3 4 5 6 7 8 9 10
选
项
1.若不等式组的解集为-1≤x≤3,则图中表示正确的是 ( )
2.如果a‖b, b‖c, d⊥a,那么 ( )
A.b⊥d B.a⊥c C.b‖d D.c‖d
3. 已知 满足方程kx-2y=1,则k等于 ( )
(A)3 (B)4 (C)5 (D)6
4. 将下列长度的三条线段首尾顺次相接,能组成三角形的是 ( )
A、4cm 3cm 5cm B、1cm 2cm 3cm C、25cm 12cm 11cm D、2cm 2cm 4cm
5. 在同一平面内,两条直线可能的位置关系是 ( )
A. 平行 B. 相交 C.平行或相交 D. 平行、相交或垂直
6. 已知方程组 的解是 ,则m,n的值是 ( )
(A) (B) (C) (D)
7. 下列各图中,正确画出AC边上的高的是 ( )
A B C D
8. 小芳画一个有两边长分别为5和6的等腰三角形,则这个等腰三角形的周长是( )
A、 16 B、17 C、11 D、16或17
9.下列命题中是真命题的是 ( )
A.同位角都相等 B.内错角都相等 C.同旁内角都互补 D.对顶角都相等
10.用两个正三角形与下面的( )若干个可以形成平面镶嵌. ( )
A.正方形 B.正六边形 C.正八边形 D.正十二边形
二、填空题:(每小题2分,共20分)
1.如果点A(x-2,2y+4)在第二象限,那么x的取值范围是________,y的取值范围是_______.
2. 在四边形ABCD中,如果∠A+∠B+∠C=280º,那么∠D=
3. 如图,∠α=125°,∠1=50°,则∠β=_______.
4.点M(3,-2)可以由点N(-3,4)先沿x轴____ _____,再沿y轴___ _______得到.
5. 一个多边形的内角和比它的外角和3倍少180º,这个多边形的边数是 。
6. 奥运会会场里5排2号可以用(5,2)表示,则(7,4)表示 。
7. 不等式-4x≥-12的正整数解为 .
8.一个多边形对角线的数目是边数的2倍,这样的多边形的边数是_______.
9.已知∠1与∠2是对顶角,∠1与∠3是邻补角,则∠2+∠3=_______.
10.已知直线a‖b,点M到直线a的距离是5cm,到直线b的距离是3cm,那么直线a和直线b之间的距离为____ ___.
三、解下列二元一次方程组:(每小题6分,共12分)
1. 2.
四、解下列不等式,并把解集表示在数轴上:(每小题6分,共12分)
1. 2. 2x-1<4x+13
五、解下列不等式组:(每小题6分,共12分)
1. 2.
六、解答题:(共44分)
1.(8分)如图,已知直线AB‖CD,求∠A+∠C与∠AEC的大小关系并说明理由.
2.(8分)已知点A(-1,-2),点B(1,4)
(1)试建立相应的平面直角坐标系;
(2)描出线段AB的中点C,并写出其坐标;
(3)将线段AB沿水平方向向右平移3个单位长度得到线段A1B1,写出线段A1B1两个端点及线段中点C1的坐标
3. (8分)如图,△ABC中,∠A=70º,外角平分线CE‖AB.求∠B和∠ACB的度数.
4.(10分)(列二元一次方程组解答)某书店的两个下属分店共有某种图书5000册,若将甲书店的该种图书调出400册给乙书店,这样乙书店该种图书的数量仍比甲书店该种图书的数量的一半还少400册.求这两个书店原有该种图书的数量差.
5.(10分)某旅店有两种客房,甲种客房每间可安排4位客人入住,乙种客房每间可安排3位客人入住.如果将某班男生都安排到甲种客房,将有一间客房住不满;若都安排到乙种客房,还有2人没处住.已知该旅店两种客房的数量相等,求该班男生人数.
参考答案:
一、 D A A A C D D D D B
二、1.x<2 y>-2 2.80度 3.105度
4.向右平移6个单位长度,向下平移6个单位长度
5.7 6. 7排4号 7.1,2,3
8.7 9.180º 10.2cm或8cm
三、1. 2.
四、1.x≥-8 2.x<-7 数轴表示略
五、1、-12≤x< 2.x<-5
六、1、∠A+∠C=∠AEC
理由:过E作EF‖AB
∵EF‖AB
∴∠A=∠AEF
∵AB‖CD,EF‖AB
∴EF‖CD
∴∠C=∠CEF
∵∠AEC=∠AEF+∠CEF
∴∠AEC=∠A+∠C
2、(1)略 (2)C(0,1) (3)A1(2,-2) B1 (4,4) C1 (3,1)
3、∠B=70º,∠ACB=40º
4、设甲书店原有图书x册,乙书店原有图书y册,根据题意得: 解得:x=4000,y=1000
x-y=3000
答:这两个书店原有该种图书的数量差为3000册。
你的问题是:你学的教材是什么版本的?才好解决,要不咋解决,全国不统一教材
1.在,,-,,3.14,2+,- ,0,,1.262662666…中,属于无理数的个数是( )
A.3个 B. 4个 C. 5个 D.6个
2.若a<0,在平面直角坐标系中,将点(a,-3)分别向左、向上平移4个单位,可以得到的对应点的位置在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
3.有4根木条,长度分别为4cm,7cm,9cm,11cm,选其中三根组成三角形,则选择的方法有( )
A.1种 B.2种 C.3种 D.4种
4.一次不等式组 的解是( )
A.x>-3 B.x<2 C.25.下列命题中,正确命题的个数是 ( )
①.在同一平面内,不相交的两条线段叫平行线 ②.不相交的两条直线叫平行线
③.过一点,有且只有一条直线平行已知直线 ④.垂直于同一直线的两直线平行
A.0个; B.1个 C.2个 D.3个
6.如果一个多边形的每一个内角都等于144o,那么它的内角和为( )
A.1260o B.1440o C.1620o D.1800o
7.一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来方向
上平行前进,那么这两次拐弯的角度是( )
A.第一次向右拐60o,第二次向左拐120o;
B.第一次向左拐120o,第二次向右拐120o;
C.第一次向右拐60o,第二次向右拐60o;
D.第一次向左拐60o,第二次向左拐120o.
8.如图1,直线a、b被直线c、d所截,下列条件中不能判断a‖b的是( )
A.∠1=∠2 B. ∠5=∠7 C. ∠4=∠6 D. a⊥d、d⊥b
7. 设“●”“▲”“■”表示三种不同的物体,现用天平称了两次,情况如图2所示,那么 ●、▲、■这三种物体按质量从大到小的顺序排列为( )
A. ■●▲ B. ■▲● C. ▲●■ D. ▲■●
10.一次智力测验,有20道选择题.评分标准是:对1题给5分,错1题扣2分,不答题不给分也不扣分.小明有两道题未答.至少答对几道题,总分才不会低于60分.则小明至少答对的题数是( )
A.7道 B.8题 C.9题 D.10题
二.填空题:(每小题3分,共24分)
11.计算-(-3)+--= .
12.一张三角形纸片ABC,∠A=55o,∠B=65o,现将纸片的一角折叠,
使点C落在ΔABC中,如图3,若∠1=30o,则∠2= . A
13.若y=++2,则3x+4y-1的平方根是 .
14.给你一对数值 ,请写出一个二元一次方程组,
使这对数是满足这个方程组的解 .
15.如图4,ΔABC中,AB=2.5cm,BC=4cm, 则ΔABC的
高AD与CE的比是 .
16.一些形状、大小相同的任意四边形,能否镶嵌成平面图案? (填“能”或“不能” ),道理是: .
17.如图5,把直角梯形ABCD沿AD方向平移到梯形EFGH,
HG=24m,MG=8m,MC=6m,则阴影部分地的面积是 .
18.观察下列等式, =2,=3,
=4,请你写出含有n(n>2的自然数)的等式表示上述各式规律的一般化公式: .
三、解答题:(第19、20、21、22、23题各6分,第24、25题各8分,共46分)
19.解方程组 20.解不等式并将解集表示在数轴上
21.某商场购进甲、乙两种商品50件,甲种商品进价每件35元,利润率是20%,乙种商品的进价每件20元,利润率是15%,共获利278元,问甲、乙两种商品各购进了多少件?
22.如图6, 四边形ABCD在平面直角坐标系中. A(2,2)
(1)分别写出B、C、D的坐标.
(2)求四边形ABCD的面积.(保留两个有效数字)
23.如图7,ΔABC中,∠A=40o,∠ABC=110o,CE平分∠ACB,CD⊥AB于D,DF⊥CE。求∠CDF的度数?
24.某连队在一次执行任务中将战士编成8个组.如果每组分配人数比预定人数多1名,那么战士总数将超过100人;如果每组分配人数比预定人数少1名,那么战士总数将不到90人. 求预定每组分配战士的人数.
25.为了保护环境,某企业决定购买10台污水处理设备,现有A、B两种型号的设备,其中每台价格、月处理污水量及年消耗费如下表:
经预算,该企业购买设备的资金不高于105万元。
请你设计该企业有几种购买方案;
若企业每月产生的污水量为2040吨, 为了节约资金,应选择哪种购买方案;
在第(2)问的条件下,若每台设备的使用年限为10年,污水厂处理污水费为每吨10元,请你计算,该企业自己处理污水与将污水厂处理相比较,10年节约资金多少万元?(注:企业处理污水的费用包括购买设备的资金和消耗费)
哪个出版社的?
如果点A(X-2,-2011)在第三象限,那么X的取值范围是