什么是相关系数?谢谢

2024-12-23 05:29:07
推荐回答(5个)
回答1:

相关系数是变量之间相关程度的指标。样本相关系数用r表示,总体相关系数用ρ表示,相关系数的取值范围为[-1,1]。|r|值越大,误差Q越小,变量之间的线性相关程度越高;|r|值越接近0,Q越大,变量之间的线性相关程度越低。   相关系数又称皮(尔生)氏积矩相关系数,说明两个现象之间相关关系密切程度的统计分析指标。   相关系数用希腊字母γ表示,γ值的范围在-1和+1之间。
γ>0为正相关,γ<0为负相关。γ=0表示不相关;   γ的绝对值越大,相关程度越高。   两个现象之间的相关程度,一般划分为四级:   如两者呈正相关,r呈正值,r=1时为完全正相关;如两者呈负相关则r呈负值,而r=-1时为完全负相关。完全正相关或负相关时,所有图点都在直线回归线上;点子的分布在直线回归线上下越离散,r的绝对值越小。当例数相等时,相关系数的绝对值越接近1,相关越密切;越接近于0,相关越不密切。当r=0时,说明X和Y两个变量之间无直线关系。通常|r|大于0.8时,认为两个变量有很强的线性相关性。
编辑本段相关系数的计算公式
  其中xi为自变量的标志值;i=1,2,…n;■为自变量的平均值,   为因变量数列的标志值;■为因变量数列的平均值。   为自变量数列的项数。对于单变量分组表的资料,相关系数的计算公式为: 相关系数计算公式
  ?   r=n(写上面)∑i=1(写下面)(Xi-X的平均数)(Yi-Y平均数)/根号下[∑(样子同上)(Xi-X平均数)的平方*∑(样子同上)(Yi-Y平均数)的平方   其中fi为权数,即自变量每组的次数。在使用具有统计功能的电子计算机时,可以用一种简捷的方法计算相关系数,其公式为:   使用这种计算方法时,当计算机在输入x、y数据之后,可以直接得出n、■、Σxi、Σyi、Σ■、Σxiy1、γ等数值,不必再列计算表。
编辑本段相关系数的性质
  (1)相关系数可正可负;   (2)相关系数的区间是[-1,1],即∣ρxy∣≤1;   (3)具有对称性;即X与Y之间的相关系数(rXY)和Y与X之间的相关系数(rYX);   (4)相关系数与原点和尺度无关;   (5)如果X与Y统计上独立,则它们之间的相关系数为零;但是r=0不等于说两个变量是独立的。即零相关并不一定意味着独立性;   (6)相关系数是线性关联或线性相依的一个度量,它不能用于描述非线性关系;   (7)虽然相关系数是两个变量之间的线性关联的一个度量,却不一定有因果关系的含义;

回答2:

相关系数是变量之间相关程度的指标。样本相关系数用r表示,总体相关系数用ρ表示,相关系数的取值范围为[-1,1]。|r|值越大,误差Q越小,变量之间的线性相关程度越高;|r|值越接近0,Q越大,变量之间的线性相关程度越低。 相关系数又称皮(尔生)氏积矩相关系数,说明两个现象之间相关关系密切程度的统计分析指标。 相关系数用希腊字母γ表示,γ值的范围在-1和+1之间。 γ>0为正相关,γ<0为负相关。γ=0表示不相关; γ的绝对值越大,相关程度越高。 两个现象之间的相关程度,一般划分为四级: 如两者呈正相关,r呈正值,r=1时为完全正相关;如两者呈负相关则r呈负值,而r=-1时为完全负相关。完全正相关或负相关时,所有图点都在直线回归线上;点子的分布在直线回归线上下越离散,r的绝对值越小。当例数相等时,相关系数的绝对值越接近1,相关越密切;越接近于0,相关越不密切。当r=0时,说明X和Y两个变量之间无直线关系。通常|r|大于0.8时,认为两个变量有很强的线性相关性。
编辑本段相关系数的计算公式 其中xi为自变量的标志值;i=1,2,…n;■为自变量的平均值, 为因变量数列的标志值;■为因变量数列的平均值。 为自变量数列的项数。对于单变量分组表的资料,相关系数的计算公式为: 相关系数计算公式
[1]? r=n(写上面)∑i=1(写下面)(Xi-X的平均数)(Yi-Y平均数)/根号下[∑(样子同上)(Xi-X平均数)的平方*∑(样子同上)(Yi-Y平均数)的平方 其中fi为权数,即自变量每组的次数。在使用具有统计功能的电子计算机时,可以用一种简捷的方法计算相关系数,其公式为: 使用这种计算方法时,当计算机在输入x、y数据之后,可以直接得出n、■、∑xi、∑yi、∑■、∑xiy1、γ等数值,不必再列计算表。

回答3:

相关系数R表示两个变量之间线性相关关系,r大于0时两个变量呈正相关;r小于0时两个变量呈负相关。r的绝对值在1与-1之间。r的绝对值越接近1,两个变量线性相关性越强;r的绝对值接近于0时表明两个变量几乎不存在线性相关关系。通常r 绝对值大于0.75时就认为两个变量有很强的线性相关关系。

回答4:

科普中国·科学百科:相关系数

回答5:

定义1:衡量两个变量线性相关密切程度的量。对于容量为n的两个变量x,y的相关系数rxy可写为 ,式中 是两变量的平均值 应用学科:大气科学(一级学科);气候学(二级学科)
定义2:由回归因素所引起的变差与总变差之比的平方根。 应用学科:生态学(一级学科);数学生态学(二级学科)
定义3:度量两个随机变量间关联程度的量。相关系数的取值范围为(-1,+1)。当相关系数小于0时,称为负相关;大于0时,称为正相关;等于0时,称为零相关。 应用学科:遗传学(一级学科);群体、数量遗传学(二级学科)