曲线方程y=sinx,0≤ x≤π及y轴所围成的平面图形绕y轴旋转一周所得的旋转体的体积为2π。
解:
扩展资料:
正弦定理的计算公式:
1、半径为r的圆柱上与一斜平面相交得到一椭圆,该斜平面与水平面的夹角为α,截取一个过椭圆短径的圆。以该圆和椭圆的某一交点为起始转过一个θ角。则椭圆上的点与圆上垂直对应的点的高度可以得到
f(c)=r tanα sin(c/r)
r:圆柱半径;α:椭圆所在面与水平面的角度;c:对应的弧长(从某一个交点起往某一个方向移动)。
则椭圆(x*cosα)^2+y^2=r^2的周长与f(c)=r tanα sin(c/r)的正弦曲线在一个周期内的长度是相等的,而一个周期T=2πr,正好为一个圆的周长。
2、 A/sina=B/sinb=C/sinc=2R(A B C为角a b c所对的三边,R为三角形外切圆半径)
参考资料来源:百度百科-正弦
旋转体体积=19.58
题目有误。