根据正弦定理 a/sinA=b/sinB=c/sinC
得:a=(sinA/sinB)*b c=(sinC/sinB)*b
将其带入已知条件 a+c=2b中
可得sinA+sinC=2sinB
根据三角函数和公式
sinA+sinC
=2sin[(A+C)/2] * cos[(A-C)/2]
∴A+B+C=π
∵sin[(A+C)/2]
=sin[(π-B)/2]
=sin(π/2-B/2)
=cos(B/2)
∴A-C=60°
∵cos[(A-C)/2]=cos30°=(√3)/2
∵sinA+sinC=√3*cos(B/2)=2sinB
根据倍角公式 sinB=2sin(B/2)cos(B/2) √3*cos(B/2)
=4sin(B/2)cos(B/2) sin(B/2)
=(√3)/4 cos(B/2)
=√(1-((√3)/4)^2)
=(√13)/4
sinB=2sin(B/2)cos(B/2)=(√39)/8