在等差数列{an}中,已知a1=1/3,a2+a5=4,an=33,求n

2024-12-17 05:25:35
推荐回答(3个)
回答1:

由等差数列的性质a2+a5=a1+a6=4,而a1=1/3,故a6=11/3
则公差d=(a6-a1)/5=2/3,可得通项公式an=(2n-1)/3
令an=33,则2n-1=99 解得n=50

回答2:

N=50

回答3:

a2+a5=a1+d+a1+4d=2/3+5d=4
d=2/3
a1+(n-1)d=an
1/3+(n-1)d=33
解得 n=50