P值是拒绝原假设的值。
回归系数P的隐姿检验是t检验,当P<α值,即回归系数显著,拒绝原假设。
回归模型检验是检验模型是否合适,通过F检验,当F检验P<α,则模型显著,即反映的孝核总体回归。
通过这两种检验,而且符合经济自然规律后的模型可预测。
如果在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条巧携掘直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且自变量之间存在线性相关,则称为多重线性回归分析。
扩展资料:
在许多自变量共同影响着一个因变量的关系中,判断哪个(或哪些)自变量的影响是显著的,哪些自变量的影响是不显著的,将影响显著的自变量加入模型中,而剔除影响不显著的变量,通常用逐步回归、向前回归和向后回归等方法。
利用所求的关系式对某一生产过程进行预测或控制。回归分析的应用是非常广泛的,统计软件包使各种回归方法计算十分方便。
在回归分析中,把变量分为两类。一类是因变量,它们通常是实际问题中所关心的一类指标,通常用Y表示;而影响因变量取值的的另一类变量称为自变量,用X来表示。
回归分析研究的主要问题是:
(1)确定Y与X间的定量关系表达式,这种表达式称为回归方程;
(2)对求得的回归方程的可信度进行检验;
(3)判断自变量X对因变量Y有无影响;
(4)利用所求得的回归方程进行预测和控制。
参考资料来源:百度百科——回归分析
P值是 拒绝原假设的值
回归哪袜老系数b的检验 是 t检验 当P<α值 即回归系数显著 拒绝原假设
回归模型检验 是检验模型是否合适 通好碰过F检验 当F检验P<α 则模型显著 即反映的总体回归
通过这两种检验 而且符合经济自然规李升律后的模型可预测