已知函数f(x)=2√3sinxcosx+2cos²x-1(x∈R)

2024-12-17 16:19:09
推荐回答(4个)
回答1:

f(x)=2√3sinxcosx+2cos²x-1(x∈R)
f(x) = 2√3sinxcosx+2cos²x-1
= √3 * ( 2sinxcosx) + (2cos²x-1)
= 根号3 sin2x + cos2x
= 2 (sin2xcosπ/6+cos2xsinπ/6)
=2 sin(2x+π/6)

最小正周期:2π/2 = π

在区间[0,π/2]
x ∈[0,π/2]
2x ∈[0,π]
2x+π/6 ∈[π/6,π+π/6]
2x+π/6∈[π/6,π/2]时单调增;
2x+π/6∈[π/2,π+π/6]时单调减
2x+π/6=π/2时有最大值,2sinπ/2=2
2x+π/6=π/6时,f(x)=2sinπ/6=1
2x+π/6=π+π/6时,f(x)=2sin(π+π/6)=-1
所以最小值-1,最大值2

f(x0)=6/5
2 sin(2x0+π/6)=6/5
sin(2x0+π/6)=3/5......(1)
x0∈[π/4,π/2]
2x0∈[π/2,π]
2x0+π/6 ∈[2π/3,7π/6]
cos(2x0+π/6) = - 根号{-sin^2(0+π/6)} = - {1-(3/5)^2} = -4/5......(2)

由(1):sin2x0cosπ/6+cos2x0sinπ/6=3/5
根号3/2 sin2x0 + 1/2 cos2x0 = 3/5
根号3 sin2x0 + cos2x0 = 6/5 ......(3)

由(2):cos2x0cosπ/6 - sin2x0sinπ/6 = -4/5
根号3/2 cos2x0 - 1/2 sin2x0 = -4/5
根号3 cos2x0 - sin2x0 = -8/5 ......(4)

(3)+(4)*根号3得:
cos2x0+3cos2x0 = 6/5 -8根号3/5
4cos2x0= 6/5 -8根号3/5
cos2x0= 3/10 - 2根号3 /5

求cos2x0

回答2:

1.f(x)=2√3sinxcosx+2cos²x-1=√3sin2x+cos2x=2sin(2x+π/6)
所以最小正周期T=π,
当x∈[0,π/2]时,2x+π/6∈[π/6,7π/6],∴sin(2x+π/6)∈[-1/2,1]
所以f(x)最大值为2,最小值-1.
2.f(x0)=6/5知,sin(2x0+π/6)=3/5,由x0∈[π/4,π/2],知2x0+π/6∈[2π/3,7π/6],所以
cos(2x0+π/6)=-4/5,所以cos2x0=cos[(2xo+π/6)-π/6]=-4/5×√3/2+3/5×1/2=(3-4√3)/10

回答3:

原式=跟3sin2x+cos2x=2(gen3sin2x+1/2cos2x)=2sin(30+2x)后边的可以画图求解。。

回答4:

f(x)=2√3sinxcosx+2cos²x-1=√3sin2x+cos2x
=2[(√3/2)sin2x+0.5cos2x]
注意到:
sin 60=√3/2 cos 60=1/2
因此f(x)=2(sin 60sin2x+cos 60cos2x)=2cos(2x-60°)
函数f(x)的最小正周期 2π/2=π
x在区间[0,π/2] 2x-π/3属于【-π/3,2π/3】
最大 2 和最小值为-1