an=1+2+3+…+n=(n+1)n/2
令bn=1/an=2/(n+1)n=2*(1/n-1/(n+1))
Sbn=2*(1/1-1/2+1/2-1/3+1/3-1/4+…+1/(n-1)-1/n+1/n-1/(n+1))
=2*(1-1/(n+1))=2n/(n+1)
2-2/(n+1)
(n+1)*n\2
an=n(n+1)/2
拆项法
1/an=2/n(n+1)=2(1/n-1/(n+1))
Sn=2(1-1/2+1/2-1/3+……+1/n-1/(n+1))
=2n/(n+1)