已知x+y=4,xy=4,求x^2+y^2的値和x-y的値

2024-12-21 15:10:10
推荐回答(5个)
回答1:

由题意知x^2+y^2=(x+y)-2xy=4*4-2*4=16-8=8

(x-y)²=x²+y²-2xy=8-2*4=0
即x-y=0

回答2:

x^2+y^2=(x+y)^2-2xy=4^2-2*4=16-8=8
(x-y)^2=x^2+y^2-2xy=8-4*2=0
所以x-y=0

回答3:

分别求出XY都是2,计算得出一个是2一个是0

回答4:

x^2+y^2
=(x+y)^2-2xy
=16-8
=8

x^2+y^2-2xy
=(x-y)^2
=8-8
=2
x-y=0

回答5:

(x+y)²-2xy
=x²+y²
=4²-2*4
=8

x^2+y^2-2xy
=(x-y)^2
=8-8
=0