为什么要和x^2比,目的是证明出分母是与x^2 为等价无穷小,那么后面的极限计算就简单了,为什么是x^2还不是x^3或x^4?思路大概是:原表达式的分母那个求导后,为2xe^(-x^4) 而 若原分母除以x^2, 上下求导不就是e^(-x^4),当x趋于0时,极限不就是1吗。也就是原分母戊x^2为等价无穷小,后面的就简单了