氢能 【hydrogen energy】【】 通过氢气和氧气反应所产生的能量。氢能是氢的化学能,氢在地球上主要以化合态的形式出现,是宇宙中分布最广泛的物质,它构成了宇宙质量的75%。由于氢气必须从水、化石燃料等含氢物质中制得,因此是二次能源。工业上生产氢的方式很多,常见的有水电解制氢、煤炭气化制氢、重油及天然气水蒸气催化转化制氢等。氢能具有以下主要优点:燃烧热值高,每千克氢燃烧后的热量,约为汽油的3倍,酒精的3.9倍,焦炭的4.5倍。燃烧的产物是水,是世界上最干净的能源。资源丰富,氢气可以由水制取,而水是地球上最为丰富的资源。目前,氢能技术在美国、日本、欧盟等国家和地区已进入系统实施阶段。
煤炭石油等矿物燃料的广泛使用,已对全球环境造成严重污染,甚至对人类自身的生存造成威
胁。同时矿物燃料的存量,是一个有限量,也会随着过度开采而枯竭。因此,当前在设法降低现有常
规能源(如煤、石油等)造成污染环境的同时,清洁能源的开发与应用是大势所趋。氢能是理想的清洁能源之一,已广泛引起人们的重视。氢不仅是一种清洁能源而且也是一种优良的能源载体,具有可储的特性。储能是合理利用能量的一种方式。太阳能、风能分散间歇发电装置及电网负荷的峰谷差或
有大量廉价电能能都可以转化为氢能储存,供需要时再使用,这种储能方式分散灵活。氢能也具有可
输的特性,如在一定条件下将电能转化为氢能,输氢较输电有一定的优越性。科学家认为,氢能在二
十一世纪能源舞台上将成为一种举足轻重的能源。
l、氢的产生途径
1.1电解水制氢.
水电解制氢是目前应用较广且比较成熟的方法之一。水为原料制氢过程是氢与氧燃烧生成水的
逆过程,因此只要提供一定形式一定能量,则可使水分解。提供电能使水分解制得氢气的效率一般在
75-85%,其工艺过程简单,无污染,但消耗电量大,因此其应用受到一定的限制。利用电网峰谷差电解水制氢,作为一种贮能手段也具有特点。我国水力资源丰富,利用水电发电,电解水制氢有其发展前景。太阳能取之不尽,其中利用光电制氢的方法即称为太阳能氢能系统,国外已进行实验性研究。随着太阳电池转换能量效率的提高,成本的降低及使用寿命的延长,其用于制氢的前景不可估量。同时,太阳能、风能及海洋能等也可通过电制得氢气并用氢作为中间载能体来调节,贮存转化能量,使得对用户的能量供应更为灵活方便。供电系统在低谷时富余电能也可用于电解水制氢,达到储能的目的。我国各种规模的水电解制氢装置数以百计,但均为小型电解制氢设备,其目的均为制提氢气作料而非作为能源。随着氢能应用的逐步扩大,水电解制氢方法必将得到发展。
1.2矿物燃料制氢
以煤、石油及天然气为原料制取氢气是当今制取氢气是主要的方法。该方法在我国都具有成熟的工艺,并建有工业生产装置。
(1)煤为原料制取氢气
在我国能源结构中,在今后相当长一段时间内,煤炭还将是主要能源。如何提高煤的利用效率及
减少对环境的污染是需不断研究的课题,将煤炭转化为氢是其途径之一。
以煤为原料制取含氢气体的方法主要有两种:一是煤的焦化(或称高温干馏),二是煤的气化。焦化是指煤在隔绝空气条件下,在90-1000℃制取焦碳副产品为焦炉煤气。焦炉煤气组成中含氢气55-60%(体积)甲烷23-27%、一氧化碳6-8%等。每吨煤可得煤气300-350m3,可作为城市煤气,
亦是制取氢气的原料。煤的气化是指煤在高温常压或加压下,与气化剂反应转化成气体产物。气化
剂为水蒸汽或氧所(空气),气体产物中含有氢有等组份,其含量随不同气化方法而异。我国有大批中小型合成氢厂,均以煤为原料,气化后制得含氢煤气作为合成氨的原料。这是一种具有我国特点的取得氢源方法。采用OGI固定床式气化炉,可间歇操作生产制得水煤气。该装置投资小,操作容易,其气体产物组成主要是氢及一氧化碳,其中氢气可达60%以上,经转化后可制得纯氢。采用煤气化制氢方法,其设备费占投资主要部分。煤地下气化方法近数十年已为人们所重视。地下气化技术具有煤
资源利用率高及减少或避免地表环境破坏等优点。中国矿业大学余力等开发并完善了"长通道、大断
面、两阶段地下煤气化"生产水煤气的新工艺,煤气中氢气含量达50%以上,在唐山刘庄已进行工业性试运转,可日产水煤气5万m3,如再经转化及变压吸附法提纯可制得廉价氢气,该法在我国具有一定开发前景.我国对煤制氢技术的掌握已有良好的基础,特别是大批中小型合成氨厂的制氢装置遍布各地,为今后提供氢源创造了条件。我国自行开发的地下煤气化制水煤气获得廉价氢气的工艺已取得
阶段成果,具有开发前景,值得重视。
(2)以天然气或轻质油为原料制取氢气
该法是在催化剂存在下与水蒸汽反应转化制得氢气。主要发生下述反应:
CH4+H2O→CO+H2
CO+H2O→COZ+HZ
CnH2h+2+Nh2O→nCO+(Zh+l)HZ
反应在800-820℃下进行。从上述反应可知,也有部分氢气来自水蒸汽。用该法制得的气体组
成中,氢气含量可达74%(体积),其生产成本主要取决于原料价格,我国轻质油价格高,制气成本贵,采用受到限制。大多数大型合成氨合成甲醇工厂均采用天然气为原料,催化水蒸汽转化制氢的工艺。我国在该领域进行了大量有成效的研究工作,并建有大批工业生产装置。我国曾开发采用间歇式天然气蒸汽转化制氢工艺,制取小型合成氨厂的原料,这种方法不必用采高温合金转化炉,装置投资成本低。以石油及天然气为原料制氢的工艺已十分成熟,但因受原料的限制目前主要用于制取化工原
料。
(3)以重油为原料部分氧化法制取氢气
重油原料包括有常压、减压渣油及石油深度加工后的燃料油,重油与水蒸汽及氧气反应制得含氢
气体产物。部分重油燃烧提供转化吸热反应所需热量及一定的反应温度。该法生产的氢气产物成本
中,原料费约占三分之一,而重油价格较低,故为人们重视。我国建有大型重油部分氧化法制氢装置,用于制取合成氢的原料。
1.3生物质制氢
生物质资源丰富,是重要的可再生能源。生物质可通过气化和微生物制氢。
(1)生物质气化制氢
将生物质原料如薪柴、麦秸、稻草等压制成型,在气化炉(或裂解炉)中进行气化或裂解反应可制得含氢燃料。我国在生物质气化技术领域的研究已取得一定成果,在国外,由于转化技术的提高,生物质气化已能大规模生产水煤气,其氢气含量大大提高。
(2)微生物制氢
微生物制氢技术亦受人们的关注。利用微生物在常温常压下进行酶催反应可制得氢气。生物质
产氢主要有化能营养微生物产氢和光合微生物产氢两种。属于化能营养微生物的是各种发酵类型的
一些严格厌氧菌和兼性厌氧菌)发酵微生物放氢的原始基质是各种碳水化合物、蛋白质等。目前已有
利用碳水化合物发酵制氢的专利,并利用所产生的氢气作为发电的能源。光合微生物如微型藻类和
光合作用细菌的产氢过程与光合作用相联系,称光合产氢。
1.4其它合氢物质制氢
国外曾研究从硫化氢中制取氢气。我国有丰富的H25资源,如河北省赵兰庄油气田开采的天然气中H多含量高达90%以上,其储量达数千万吨,是一种宝贵资源,从硫化氢中制氢有各种方法,我国在90年代开展了多方面的研究,各种研究结果将为今后充分合理利用宝贵资源,提供清洁能源及
化工原料奠定基础。
1.5各种化工过程副产氢气的回收
多种化工过程如电解食盐制碱工业、发酵制酒工艺、合成氨化肥工业、石油炼制工业等均有大量
副产氢气,如能采取适当的措施进行氢气的分离回收,每年可得到数亿立方米的氢气。这是一项不容
忽视的资源,应设法加以回收利用。目前化工厂副产氢气的回收,可提供一种较为廉价的氢源,应予
以重视。
2、氢的解和运输
氢在一般条件下是以气态形式存在的,这就为贮存和运输带来了很大的困难。氢的贮存有三种
方法:高压气态贮存;低温液氢贮存;金属氢化物贮存。
2.l气态贮存
气态氢可贮存在地下库里,也可装人钢瓶中,为减小贮存体积,必须先将氢气压缩,为此需消耗较多的压缩功。一般一个充气压力为 20mp的高压钢瓶贮氢重量占只1.6%;供太空用的钛瓶储氢重量
也仅为5%。为提高贮氢量,目前正在研究一种微孔结构的储氢装置,它是一微型球床。微型球系薄
壁(1—10um),充满微孔(l0-10um),氢气贮存在微孔中,微型球可用塑料、玻璃、陶瓷或金属制造。
2.2、低温液氢贮存
将氢气冷却到-253℃,即可呈液态,然后,将其贮存在高真空的绝热容器中,液氢贮存工艺首先
用于宇航中,其贮存成本较贵,安全技术也比较复杂.高度绝热的贮氢容器是目前研究的重点,现在一种间壁间充满中孔微珠的绝热容器已经问世。这种二氧化硅的微珠导热系数极小,其颗粒又非常细
可完全抑制颗粒间的对流换热,将部分镀铝微珠(一般约为3%-5%)混入不镀铝的微珠中可有效地
切断辐射传热。这种新型的热绝缘容器不需抽真空,其绝热效果远优于普遍高真空的绝热容器,是一
种理想的液氢贮存罐,美国宇航局已广泛采用这种新型的贮氢容器。
2.3、金属氢化物贮存
氢与氢化金属之间可以进行可逆反应,当外界有热量加给金属氢化物时,它就分解为氢化金属并
放出氢气。反之氢和氢化金属构成氢化物时,氢就以固态结合的形式储于其中,用来贮氢的氢化金属
大多为由多种元素组成的合金。目前世界上己研究成功多种贮氢合金,它们大致可以分为四类:一是
稀土锎镍等,每公斤锎镍合金可贮氢153L。二是铁一钛系,它是目前使用最多的贮氢材料,其贮氢量
大,是前者的4倍,且价格低,活性大,还可在常温常压下释放氢,给使用带来很大的方便。三是镁系,这是吸氢量最大的金属元素,但它需要在287℃下才能释放氢,且吸收氢十分缓慢,因而使用上受限制。四是钒、铌、锆等多元素系,这类金属本身属稀贵金属,因此进一步研究氢化金属本身的化学物理性质,包括平衡压力一温度曲线、生成食转化反应速度,化学及机械稳定性等,寻求更好的贮氢材料仍是氢开发利用中值得注意的问题。带金属氢化物的贮氢装置既有固定式也有移动式,它们既可作为氢燃料和氢物料的供应来源,也可用于吸收废热,储存太阳能,还可作氢泵或氢压缩机使用。
2.4、氢气的运输
氢虽然有很好的可运输性,但不论是气态氢还是液氢,它们在使用过程中都存在在着不可忽视的
特殊问题,首先,由于氢特别轻,与其他燃料相比在运输和使用过程中单位能量所占的体积特别大,即使液态氢也是如此。其次,氢特别容易泄漏,以氢作燃料的汽车行驶试验证明,即使是真空密封的氢燃料箱,每24h的泄漏率就达2%,而汽油一般一个月才泄漏1%,因此对贮氢容器和输氢管道、接头、阀门都要采取特殊的密封措施。第三,液氢的温度极低,只要有一点滴掉在皮肤上就会发生严重的冻伤,因此在运输和使用过程中应特别注意采取各种安全措施。
3、氢能利用
早在第二次世界大战期间,氢即用作A—2火箭发动机的液体推进剂。1960年液氢首次用作航天动力燃料。1970年美国发射的"阿波罗"登月飞船使用的起飞火箭也是用液氢作燃料。现在氢已是火箭领域的常用燃料了。对现代航天飞机而言,减轻燃料自重,增加有效载何变得更为重要。氢的能量密度很高,是普遍汽油的3倍,这意味着燃料的自重可减轻2/3,这对航天飞机无疑是极为有利的。今天的航天飞机以氢作为发动机的推进剂,以纯氧分为氧化剂,液氢就装在外部推进剂桶内,每次发射需用 1450m3,重约100t。
现在科学家们正在研究一种"固态氢"的宇宙飞船。固态氢既作为飞船的结构材料,又作为飞船
的动力燃料。在飞行期间,飞船上所有的非重要零件都可以转作能源而"消耗掉"。这样飞船在宇宙
中就能飞行更长的时间。
氢是21世纪重要的能源载体。以氢为燃料的燃料电池,燃烧时氢与氧结合生成水,是一种洁净的发电技术,顺应了全球的环保大趋势。
当前,世界著名的汽车厂商,为发展环保型汽车,加紧更新传统的车用燃料,纷纷决定采用氢能,掀起了一场氢能汽车开发的热潮。实验证明,使用氢燃料电池的汽车排放的碳仅为常规内燃机的
30%,造成的大气污染仅为内燃机的5%,美国汽车工业协会预测,到2002年,美国将生产约50万-
100万辆氢能汽车。
除汽车外,200年开始,美国、欧洲和日本将在飞机上推广氢燃料。据欧洲空中客车飞机公司预
测,最迟将于2002年,欧洲生产的飞机可大规模采用液氢为燃料。由于液态氢的工作温度为-253℃,因此必须改进目前的飞机燃料系统。德国戴姆勒一奔驰航空公司和俄罗斯航空公司已从1996年开始进行试验,证实在配备有双发动机的喷气机中使用液氢,其安全性有足够的保证。另外,由于同等重量的氢和汽油相比,氢提供的能量是汽油的3倍,但即使液态氢也需要4倍于汽油的容积,从而飞机设计师们面临的任务是将传统的机翼设计成可以容纳更多液氢的新型构造。
氢能的开发与应用研究在我国尚处于起步阶段,但随着技术进步,环境对清洁能源的要求不断提
高,氢能利用是发展的必然趋势,对氢源供应的要求必将日益增加。在发展过程中,应结合我国情况
积极开展扩大氢源、降低价格的研究,以便取得较好的经济效益和社会效益。
4、结束语
不久的将来,"氢经济社会"节省下石油、煤炭等化石燃料资源,基本废除内燃机动力系统,实现无污染排放,缓解温室效应,让环境更洁净、空气更清新。同时,氢能的使用也会带动可再生能源设备:电解水设备、燃料电池、储氢器等一系列新兴制造产业,全面推动经济发展。而核聚变电站、太阳能电站、风力电站及潮汐电站的发展又可以与氢能技术进一步结合,把人类利用能源的水平提高到新的水平。
总之,氢能的研究与开发有广宽的前景,随着氢能应用领域的逐步成熟与扩大,必然推动制氢方
法研究与开发。适合我国国情的廉价的氢源供应又将会进一步促进氢能的应用,为改善环境造福人
民作出贡献。
什么是氢能
氢能在二十一世纪有可能在世界能源舞台上成为一种举足轻重的二次能源。它是一种极为优越的新能源,其主要优点有:燃烧热值高,每千克氢燃烧后的热量,约为汽油的3倍,酒精的3.9倍,焦炭的4.5倍。燃烧的产物是水,是世界上最干净的能源。资源丰富,氢气可以由水制取,而水是地球上最为丰富的资源,演义了自然物质循环利用、持续发展的经典过程。
前景
氢是宇宙中分布最广泛的物质,它构成了宇宙质量的75%,因此氢能被称为人类的终极能源。水是氢的大“仓库”,如把海水中的氢全部提取出来,将是地球上所有化石燃料热量的9000 倍。氢的燃烧效率非常高,只要在汽油中加入4% 的氢气,就可使内燃机节油40%。目前,氢能技术在美国、日本、欧盟等国家和地区已进入系统实施阶段。美国政府已明确提出氢计划,宣布今后4年政府将拨款17亿美元支持氢能开发。美国计划到2040年美国每天将减少使用1100万桶石油,这个数字正是现在美国每天的石油进口量。
——————————————————————————————————
氢能 【hydrogen energy】【】 通过氢气和氧气反应所产生的能量。氢能是氢的化学能,氢在地球上主要以化合态的形式出现,是宇宙中分布最广泛的物质,它构成了宇宙质量的75%。由于氢气必须从水、化石燃料等含氢物质中制得,因此是二次能源。工业上生产氢的方式很多,常见的有水电解制氢、煤炭气化制氢、重油及天然气水蒸气催化转化制氢等。氢能具有以下主要优点:燃烧热值高,每千克氢燃烧后的热量,约为汽油的3倍,酒精的3.9倍,焦炭的4.5倍。燃烧的产物是水,是世界上最干净的能源。资源丰富,氢气可以由水制取,而水是地球上最为丰富的资源。目前,氢能技术在美国、日本、欧盟等国家和地区已进入系统实施阶段。
什么来代替石油?氢能领跑新世纪
作者:曹鹏程 文章来源:新华网 点击数:71 更新时间:9/18/2006
上世纪末,三位实业幻想家编写的《自然资本论》描绘了人类日常生活的一种景象:几十年以后,汽车排出的只有水蒸气;石油每桶5美元仍没人使用;空气中二氧化碳含量降到200年来的最低点。人类完成了新的能源革命——氢能成为下一次工业革命的主角。
看着石油越来越贵,世界各国都开始实行能源多样化战略,加大新能源研发力度。而在各种新能源中,太阳能、风能不稳定,氢能源是目前最有可能实现实用的新能源。据相关调查显示,过去5年,工业化国家在氢能领域的开发投入年均递增20.5%,各国对氢能实际利用的开发硕果累累,下一次工业革命的幻想也似乎越来越逼真。
在众多高度工业化的发达国家里,日本研究氢能比较早,目前燃料电池是日本氢能的主要发展方向,主要分为车载电池和固定装置电池两类。去年秋季闭幕的爱知世博会为日本提供了一个展示燃料电池未来前景的舞台,日本政府馆用的电源完全来自燃料电池,8辆燃料电池公共汽车在会场之间穿梭给参观者留下了深刻的印象。
日本矢野经济研究所的一份报告认为,到2010年,全球氢燃料汽车的普及数量将达约4万辆。目前,许多大汽车厂商都有氢燃料电池项目,其中日本本田的氢燃料电池轿车已通过检测,成为商品车。
日本政府为促进氢能实用化和普及、完善汽车燃料供给体制,已于2005年完成了燃料电池车公路行驶验证、氢气站验证、住宅用和业务用燃料电池验证。全国出现了不少“加氢站”,近百辆燃料电池车已经取得牌照上路。政府计划逐渐扩大燃料电池车的市场规模,到2030年,燃料电池车达到1500万台,固定装置燃料电池发电能力达到1250万千瓦。在固定式燃料电池方面,日本已在全国实际设置了33处,以气候寒冷或住宅密集等实际条件展开实证试验。到目前为止,燃料电池的技术开发,以及氢的制造、运输、储藏的技术开发已经基本成熟。记者在日本能源厅采访时了解到,目前在发达国家,发展氢能注重“两条腿走路”--既要大力发展燃料电池汽车,也要注意开发固定氢能发电装置。
从长远的角度看,油价越高,开发新能源技术的投资就越合算。作为一次性能源的石油终会有枯竭的一天,可再生的新能源不仅能实现未来人类的可持续发展,也可以降低治理环境污染的发展成本。对于石油进口国来说,又可以降低购买石油的生产成本,对保证国家安全、降低能源风险也具有特殊意义。当然,研发新能源技术需要一定的成本,许多新能源研究机构都在呼吁世界各国加强新能源技术的交流合作,避免重复开发。另外值得一提的是,推进节能和新能源使用是一个长期事业,客观上它需要政府的行政命令有计划的强制推行,只有这样才能收到稳定的效果。
对氢能源的实际应用可以追溯到200年前,当时应用氢能源仅是个新奇的想法,从二十世纪九十年代中期开始,许多涉及到氢能源经济吸引力的问题集中地出现,这些因素包括持续严重的城市空气污染、对低排放或零排放车辆的需求、减少石油进口、全球气候变化和可再生电能供给存储的需要。这些考虑不仅仅局限于一个国家或地区,对人类来说,氢储量丰富、而且极易获得,是理想的能源载体。
氢燃料的优点很多,使用氢燃料主要的优点之一是可以使排放的二氧化碳降为零,因此对能源来源和转化技术评估显得尤为重要。我们可以通过从原油或生物材料(包括城市的固体废物或叫MSW)里提取氢原子,或者通过用化石燃料或游离碳能源发电电解水获得氢。后者一般比较昂贵,很少被使用。不仅如此,采用混合电流能量电解氢将产生低效、碳基能源产物,这将增加二氧化碳的排放。在不久的将来,除了在那些水电资源特别丰富的国家外,例如:冰岛、挪威、瑞典、巴西和加拿大或者那些低消费、非高峰能源容易获得的国家,从天然气、甲醇、石油或MSW中提取氢将是最廉价的一种选择。尽管有二氧化碳排放治理和扣押成本,在大多数地方从原油中提取氢比电解水制氢要便宜很多。
现阶段,对于气候的变化和石油进口依靠的国际化关注的加大,导致了氢能源市场生存能力示范工程的竞争。各国政府、跨国公司和民间组织对加速氢能源转变起到了重要的作用。要实现氢经济,仍存在许多相关的问题,例如,集中还是分散生产氢;氢汽车的研究、发展和市场问题;改进燃料电池技术问题;基础设施(燃料运输和加油站)方面问题等等。氢能源的商业化和市场突破,依赖于这些复杂的因素的相互影响程度,以及成本、功率、能量存储密度和车辆的成本、性能、行驶范围、安全等。而且,如果世界某一部分地区氢能源和燃料电池发展得到突破将不可避免的影响全球经济的进程。
在竞争激烈的电力市场,将氢作为电的存储介质会取得很好的经济效果,因为氢能存储能够使公共事业系统更加灵活,允许间歇性地使用像风力发电这样间歇性的电力来源,从而为发电厂节省燃料,提高经济效益;在使用的安全性方面,氢燃料相对其他燃料要安全得多,简言之,极大多数情况下,如果点燃的话,氢气泄漏只会造成燃烧,而不会爆炸。事实表明,投资氢能源建设的前景广阔。
本报告共七章。首先对新能源产业的发展进行了详实的分析,然后介绍了氢能源的概念与特性、制备与应用等方面,接着分析了国际国内氢能源产业的发展情况。随后分别对氢燃料电池、氢燃料电池汽车产业做了重点分析,最后介绍了国内氢能行业重点企业的运营状况。您若想对氢能行业有个系统的了解或者想投资氢能源产业,本报告是您不可或缺的重要工具。
氢能在二十一世纪有可能在世界能源舞台上成为一种举足轻重的二次能源。它是一种极为优越的新能源,其主要优点有:燃烧热值高,每千克氢燃烧后的热量,约为汽油的3倍,酒精的3.9倍,焦炭的4.5倍。燃烧的产物是水,是世界上最干净的能源。资源丰富,氢气可以由水制取,而水是地球上最为丰富的资源,演义了自然物质循环利用、持续发展的经典过程。