可伐合金 4j29加工

有人了解这种材料吗?加工性能如何?好加工吗?
2025-02-05 17:29:40
推荐回答(5个)
回答1:

一、概述

1.1 4J29材料牌号 4J29。

1.2 4J29相近牌号 见表1-1。

在平均线膨胀系数达到标准规定条件下,允许镍、钴含量偏离表1-2规定范围。铝、镁、锆和钛的含量各不大于0.10%,其总量应不大于0.20%。

1.5 4J29热处理制度 标准规定的膨胀系数及低温组织稳定性的性能检验试样,在氢气气氛中加热至900℃±20℃,保温1h,再加热至1100℃±20℃,保温15min,以不大于5℃/min速度冷至200℃以下出炉。

1.6 4J29品种规格与供应状态 品种有丝、带、板、管和棒材。

1.7 4J29熔炼与铸造工艺 用非真空感应炉、真空感应炉或电弧炉熔炼。

1.8 4J29应用概况与特殊要求 该合金是国际通用的典型的Fe-Ni-Co硬玻璃封接合金。经航空工厂长期使用,性能稳定。主要用于电真空元器件如发射管、振荡管、引燃管、磁控管、晶体管、密封插头、继电器、集成电路的引出线、底盘、外壳、支架等的玻璃封接。在应用中应使选用的玻璃与合金的膨胀系数相匹配。根据使用温度严格检验其低温组织稳定性。在加工过程中应进行适当的热处理,以保证材料具有良好的深冲引伸性能。当使用锻材时应严格检验其气密性。

二、4J29物理及化学性能

2.1 4J29热性能                                        

2.1.1 4J29溶化温度范围 该合金溶化温度约为1450℃[1,2]。

2.1.2 4J29热导率 见表2-1。

2.1.3 4J29比热容 在0℃时,比热容为440J/(kg•℃);在430℃时,比热容为649J/(kg•℃)。

2.1.4 4J29线膨胀系数 标准规定α1(20~400℃)=(4.6~5.2)×10-6℃-1;α1(20~450℃)=(5.1~5.5)×10-6℃-1(当用于晶体管时上限为5.6×10-6℃-1)。

合金的平均线膨胀系数见表2-2。合金的膨胀曲线见图2-1。

2.2 4J29密度

2.3 4J29电性能

2.3.1 4J29电阻率 ρ=0.48μΩ·m[1,5]。

三、4J29力学性能

3.1 4J29技术标准规定的性能

3.1.1 4J29硬度 深冲态带材的硬度应符合表3-1的规定。厚度不大于0.2mm时不作硬度检验。

3.1.2 4J29抗拉强度 丝材和带材的抗拉强度应符合表3-2的规定。

3.2 4J29室温及各种温度下的力学性能

3.2.1 4J29硬度 冷应变率为50%的带材,在不同退火温度下的硬度见图3-1。

3.2.2 4J29拉伸性能 合金(退火态)在室温的拉伸性能见表3-3。冷应变率为50%的带材,在不同退火温度下的拉伸性能见图3-2。

3.3 4J29持久和蠕变性能

3.4 4J29疲劳性能 

3.5 4J29弹性性能 

3.5.1 4J29弹性模量 E=138GPa。

四、4J29组织结构

4.1 4J29相变温度 γ→α相变温度在-80℃以下。           

4.2 4J29时间-温度-组织转变曲线 

4.3 4J29合金组织结构 合金按1.5规定的热处理制度处理后,再经-78.5℃冷冻,大于等于4h不应出现马氏体组织。但当合金成分不当时,在常温或低温下将发生不同程度的奥氏体(γ)向针状马氏体(α)转变,相变时伴随着体积膨胀效应。合金的膨胀系数相应增高,致使封接件的内应力剧增,甚至造成部分损坏。影响合金低温组织稳定性的主要因素是合金的化学成分。从Fe-Ni-Co三元相图中可以看到,镍是稳定γ相的主要元素,镍含量偏高有利于γ相的稳定。随合金总变形率增加其组织越趋向稳定。合金成分偏析也可能造成局部区域的γ→α相变。此外晶粒粗大也会促进γ→α相变。

4.4 4J29晶粒度 标准规定深冲态带材的晶粒度应不小于7级,小于7级的晶粒不得超过面积的10%。厚度小于0.13mm的带材估计平均晶粒度时,沿带材厚度方向晶粒个数应不少于8个。

冷应变率为60%~70%的厚的带材,在表4-1所示温度下退火1h,空冷后,按YB 027-1992附录A评级,其晶粒度见表4-1。

五、4J29工艺性能与要求

5.1 4J29成形性能 该合金具有良好的冷、热加工性能,可制成各种复杂形状的零件。但应避免在含硫的气氛中加热。在冷轧时,当带材的冷应变率大于70%时,退火后会引起塑性各向异性;冷应变率在10%~15%范围时,合金在退火后会导致晶粒急剧长大,也将产生合金的塑性各向异性。当最终应变率为60%~65%,晶粒度为7~8.5级时,其塑性各向异性最小[2,4,7~9]。

合金带材的杯突值与厚度的关系见图5-1。

5.2 4J29焊接性能 该合金可采用钎焊、熔焊、电阻焊等方法与铜、钢、镍等金属焊接。当合金中锆含量大于0.06%时,将影响板材的氩弧焊焊接质量,甚至使焊缝开裂。

该合金与玻璃封接前,应清洗干净,随后进行高温湿氢处理、预氧化处理。

5.3 4J29零件热处理工艺 热处理可分为:消除应力退火、中间退火、净化去气处理、预氧化处理。

(1)消除应力退火 为消除零件在机械加工后的残存应力要进行消除应力退火:470~540℃,保温1~2h,炉冷或空冷。

(2)中间退火 为消除合金在冷轧、冷拔、冷冲压过程中引起的加工硬化现象,以利于继续加工。工件需在干氢、分解氨或真空中,加热到750~900℃,保温14min~1h,然后炉冷,空冷或水淬。

(3)净化去气处理 零件成形后,预氧化处理前,需进行湿氢处理,处理前应进行除油。工作需在饱和湿氢中,加热到950~1050℃,保温10~30min,然后炉冷。

(4)预氧化处理 合金在湿氢处理后,熔封前一般要进行预氧化处理,使合金表面生成一层厚度均匀、致密的氧化膜,该氧化膜与基体结合牢固,且能很好地与熔融的玻璃浸润。零件在湿氢处理后,在大约800℃的空气中氧化。零件的增重在0.2~0.4mg/cm2范围为宜[10]。该合金不能用热处理硬化。

5.4 4J29表面处理工艺 表面处理可用喷砂、抛光、酸洗。零件与玻璃封接后,为易于焊接,需去除封接时生成的氧化膜,可将零件在10%盐酸+10%硝酸的水溶液中,加热到70℃左右,酸洗2~5min。该合金具有良好的电镀性能,表面能镀金、银、镍、铬等金属。为便于零件间的焊接或热压粘结,常镀以铜、镍、金、锡的镀层。为改善高频电流的传导能力,降低接触电阻以保证正常的阴极发射特性,常镀以金、银的镀层。为提高器件的耐蚀性能可镀镍或金[11]。

5.5 4J29切削加工与磨削性能 该合金切削特性和奥氏体不锈钢相似。加工时采用高速钢或硬质合金刀具,低速切削加工。切削时可使用冷却剂。该合金磨削性能良好。

回答2:

人们习惯性的将4J29合金与4J50合金统称为可伐合金,两种材料都是用于玻璃封装。不同的是4J29应用硬质玻璃封装,4J50应用软质玻璃封装,4J29合金材料因为富含贵重金属钴材料价格比4J50合金贵100多元每公斤,所以市场应用的较多的还是4J50合金这种可伐材料。不管4J29合金加工与4J50合金加工都是含镍比较多的金属可伐材料加工,他们的共同特点是可塑性比较好但同时硬度又比较高。可伐合金加工因为可塑性好,如果采用CNC加工其难点就是此材料容易粘刀导致加工不顺,所以需要采用特殊涂层的刀具加工,又因为材料硬度比较高导致可伐合金加工时刀具的磨损也是非常快的,特殊涂层刀具也是比较昂贵的,如果磨损的快后果你懂的!这一点4J29合金可伐合金加工损刀更胜!尤其遇到需要打小孔的可伐合金加工件简直就是苦不堪言,一个孔打断多把刀也是常事。所以说用CNC数控车加工可伐合金是比较不容易的,加工商收贵你一点加工费你也需要理解!如果工件数量少也只有用CNC数控车加工了,除了加工费贵一点没有模具费等其他费用也是其优点嘛!有没有那种方法加工可伐合金件又快又好呢?答案是有的!随着技术的发展,连续模锻压可伐合金加工方式解决了CNC数控车加工的一些弊端!其工作原理是将可伐合金毛胚放入精密模具中,通过十几步连续锻压的方式逐步修正其精密度最后将多余的料切除的过程。连续模锻压这种可伐合金加工方式,可伐产品精密度可达到±0.02mm,生产速度更是能达到惊人的150个/分钟,难得可贵的是这种可伐合金加工方式也比CNC数控车省材料,材料利用率能达到55%以上,可伐材料都是一百RMB以上的贵重金属,有这种效果你懂的!连续模锻压可伐合金加工方式也有弊端就是模具费比较昂贵,一般都是5W以上,只适合数量大的可伐合金加工件采用,数量大摊销模具费就不是什么事了!以下产品是连续模锻压的可伐合金加工件,大家参观以下吧!

回答3:

精密合金4J29介绍



随着空间对地观测、深空探测对高分辨率探测精度等要求的不断提高,光电系统采用低温环境工作是有效途径,这给系统的集成提出了更高的要求。在低温集成系统的优化设计中,计算机仿真需要精确的材料热物性、机械性能等数据。但随着新材料的研发及应用,实际应用的新型材料在低温区数据缺乏。4J29可伐合金( 又称 Kovar 合金) 具有特殊的膨胀特性,其与硅硼硬玻璃材料在加热及冷却过程中具有相近的膨胀系数和热胀冷缩速率,因此能够实现与玻璃的牢固匹配封接,可用于真空密封,是目前航天红外低温光电系统中的常用材料。同时,4J29 可伐合金在液氮温区以上具有良好的低温组织稳定性,并且具有优异的加工、焊接及电镀性能,是航天低温系统应用中电连接器的常用材料。



Scott 于 20 世纪 30 年代研究出 4J29 可伐合金。4J29 可伐合金的膨胀系数与硅硼硬玻璃较为接近,硅硼硬玻璃能够很好地浸润 4J29 合金表面的氧化膜,这可以保证封装器件的密封性。该合金的出现很快取代了难熔金属钨、钼等,并被广泛用于飞机、航天器上的真空仪表器件的密封结构材料。硬玻璃作为半导体晶体管封装的材料,其大量使用使 4J29 合金被广泛应用于晶体管、集成电路等器件制造业。



4J29化学成分


精密合金4J29热物性能



4J29 可伐合金在低温区与常温区具有不同的热物性,其热物性的改变对系统设计具有一定的影响,这一点已引起了研究人员的重视。本文用“稳态纵向热流法”测试了 4J29 可伐合金在 77—300 K 温区的热导率值,用“稳态法”测试了 4J29 可伐合金在77—300 K 温区的比热容,用弹性模量试验机测试了77—300 K 温区的弹性模量系数,得到了 4J29 可伐合金在液氮至室温区工程需要的热物性参数及机械性能参数。热物性测试表明,4J29 可伐合金的比热容和热导率随温度的降低而降低,77 K 温区测量值均比常温区测量值小3 倍以上。力学弹性模量测试中,弹性模量值随温度的降低变化不大,大小趋势出现随机性。通过利用 TC4 钛合金作标准参考材料对比及误差分析,证明测量误差在可接受范围以内,可以作为工程系统应用设计者的引用参考数据。




4J29超声波钻削工艺优势



(1)超声振动辅助钻削可降低钻削轴向力。超声振动辅助钻削加工相比普通钻削,轴向钻削力平均降低了 35.37N,降幅为 18.45%。



(2)超声振动辅助钻削可提高制孔精度。相比与普通钻削,超声振动辅助钻削使得孔径误差平均减小17.9μm,降幅为 31.5%。



(3)超声振动辅助钻削可提高表面质量。对于轮廓算术平均偏差 Ra,超声振动辅助钻削使其平均降低了0.4862μm,降幅为 28.4%;对于微观不平度十点高度 Rz,超声振动辅助钻削孔壁的微观不平度十点高度 Rz 平均降低了 2.4940μm,降幅为 20.0%。



综上所述,试验发现超声振动钻削 4J29 可伐合金比传统钻削加工更具优势,可获得质量更高的加工孔。

回答4:

可伐合金 4j29加工用硬质合金刀具。

4J29是可伐(Kovar)合金材料。

4J29(FeNi29Co17)膨胀合金/Kovar29/K94610/1.3912/F15

4J29概述

4J29合金又称可伐(Kovar)合金。该合金在20~450℃具有与硅硼硬玻璃相近的线膨胀系数,居里点较高,并有良好的低温组织稳定性。合金的氧化膜致密,能很好地被玻璃浸润。且不与汞作用,适合在含汞放电的仪表中使用。是电真空器件主要密封结构材料。

4J29带材135丝材2435圆棒1833

4J29相近牌号

俄罗斯 美国 英国 日本 法国 德国

29HК Kovar Nilo K KV-1 Dilver P0 Vacon 12

29HК-BИ Rodar KV-2

Techallony Glasseal 29-17 Telcaseal KV-3 Dilver P1 Silvar 48[1]

4J29材料的技术标准

YB/T 5231-1993《铁镍钴玻封合金4J29和4J44技术条件》。

4J29化学成份

C≤0.03% Mn≤0.50% Si≤0.30% P≤0.020% S≤0.020% Cu≤0.20% Cr≤0.20% Mo≤0.20%

Ni=28.5~29.5% Co=16.8~17.8%

Fe=余量

在平均线膨胀系数达到标准规定条件下,允许镍、钴含量偏离表1-2规定范围。铝、镁、锆和钛的含量各不大于0.10%,其总量应不大于0.20%。

4J29热处理制度

标准规定的膨胀系数及低温组织稳定性的性能检验试样,在氢气气氛中加热至900℃±20℃,保温1h,再加热至1100℃±20℃,保温15min,以不大于5℃/min速度冷至200℃以下出炉。

4J29应用概况与特殊要求

该合金是国际通用的典型的Fe-Ni-Co硬玻璃封接合金。经航空工厂长期使用,性能稳定。主要用于电真空元器件如发射管、振荡管、引燃管、磁控管、晶体管、密封插头、继电器、集成电路的引出线、底盘、外壳、支架等的玻璃封接。在应用中应使选用的玻璃与合金的膨胀系数相匹配。根据使用温度严格检验其低温组织稳定性。在加工过程中应进行适当的热处理,以保证材料具有良好的深冲引伸性能。当使用锻材时应严格检验其气密性。

4J29合金组织结构

合金按1.5规定的热处理制度处理后,再经-78.5℃冷冻,大于等于4h不应出现马氏体组织。但当合金成分不当时,在常温或低温下将发生不同程度的奥氏体(γ)向针状马氏体(α)转变,相变时伴随着体积膨胀效应。合金的膨胀系数相应增高,致使封接件的内应力剧增,甚至造成部分损坏。影响合金低温组织稳定性的主要因素是合金的化学成分。从Fe-Ni-Co三元相图中可以看到,镍是稳定γ相的主要元素,镍含量偏高有利于γ相的稳定。随合金总变形率增加其组织越趋向稳定。合金成分偏析也可能造成局部区域的γ→α相变。此外晶粒粗大也会促进γ→α相变。

回答5:

铁镍钴合金4J29(Kovar,可伐合金,科瓦合金,ASTM F-15)1.3912/UNS K94610

用途:用于制作与硬玻璃匹配封接的铁镍钴合金带材,棒材,板材,管材。
适用于发射管、振荡管、引燃管、晶体管以及管封插头、继电器外壳等电真空器件。
在20℃-450℃温度范围内具有一定的线膨胀系数,能与硬玻璃进行匹配牢固封接。

合金在较宽的温度范围(-80~450℃)内膨胀系数与硬玻璃的膨胀系数相近,在电真空工业中,用来与硬玻璃封接制造高气密性元器件,也可以和陶瓷封接。名称:铁镍钴玻封合金。在 20~450 ℃具有与 硅硼硬玻璃相近的热膨胀系数,居里点高,具有良好的低温组织稳定性。为铁镍钴玻封合金。