x^2+y^2<=1,x^2+y^2<=2*x
在极坐标系中就是
r^2<=1,r^2<=2rcosθ
也就是r有两个限制条件:r<=1,r<=2cosθ
因此当θ在 (-π/2,-π/3)U(π/3,π/2)上时,r的上限是2cosθ;当θ在(-π/3,π/3)上时,r的上限是1
因此原积分化为极坐标下的积分:
2*∫(π/3,π/2)dθ∫(0,2cosθ)r^3*rdr+∫(-π/3,π/3)dθ∫(0,1)r^3*rdr
=2*∫(π/3,π/2)dθ(32cos^5 θ)/5+2π/3*1/5
=64/5*∫(π/3,π/2)dsinθ(1-sin^2 θ)^2+2π/15
=64/5*(sinθ-2/3sin^3 θ+1/5*sin^5 θ) | (π/3,π/2) +2π/15
=64/5*[ 8/15-(43根号3)/160 ]+2π/15
积分式中的(π/3,π/2)和(-π/3,π/3)都是上下限