(1+2)(1+2的平方)(1+2的4次方)(1+2的8次方)=?

2025-01-04 02:41:10
推荐回答(5个)
回答1:

(1+2)(1+2^2)(1+2^4)(1+2^8)
=(2-1)(2+1)(2^2+1)(2^4+1)(2^8+1)
=(2^2-1)(2^2+1)(2^4+1)(2^8+1)
=(2^4-1)(2^4+1)(2^8+1)
=(2^8-1)(2^8+1)
=2^16-1

提示:前面加2-1,然后反复用平方差公式。

回答2:

只需要增加一项(2-1):
(1+2)(1+2^2)(1+2^4)(1+2^8)
=(2-1)(2+1)(2^2+1)(2^4+1)(2^8+1)
=(2^2-1)(2^2+1)(2^4+1)(2^8+1)
=(2^4-1)(2^4+1)(2^8+1)
=(2^8-1)(2^8+1)
=2^16-1.

回答3:

(1+2)(1+2^2)(1+2^4)(1+2^8)
=(1-2)(1+2)(1+2^2)(1+2^4)(1+2^8)/(1-2)
=(1-2^2)(1+2^2)(1+2^4)(1+2^8)/(1-2)
=(1-2^4)(1+2^4)(1+2^8)/(1-2)
=(1-2^8)(1+2^8)/(1-2)
=(1-2^16)/(1-2)
=2^16-1

回答4:

(1+2)(1+2^2)(1+2^4)(1+2^8)
=(2-1)(2+1)(2^2+1)(2^4+1)(2^8+1)
=(2^2-1)(2^2+1)(2^4+1)(2^8+1)
=(2^4-1)(2^4+1)(2^8+1)
=(2^8-1)(2^8+1)
=2^16-1
配成平方差公式

回答5:

现在前面×(1-2)即可 即配成平方差公式