你的证明从第二步开始就是错的,p∧q不能直接置换成成q,置换是用等价的公式来替换,p∧q不等价于q。诀窍就是每一步都假设是真的,后面的每一步都是上面一步或者2步推导出的结果。要把基本的等价式和基本蕴涵式背熟。
正确的证明:
证明:
(1)「S∨P P //前提引入
(2)S P //前提引入
(3)P T(1)(2)I //T规则,结论由(1)(2)蕴涵推出
(4)Q P //前提引入
(5)P∧Q T(3)(4)I //T规则,结论由(3)(4)蕴涵推出
(6) (P∧Q)->R P //前提引入
(7)R T(5)(6)I //T规则,结论由(5)(6)蕴涵推出