自然对数有什么意义?

2024-12-22 13:19:43
推荐回答(5个)
回答1:

e是自然对数的底数,是一个无限不循环小数,其值是2.71828……,是这样定义的:
  当n->∞时,(1+1/n)^n的极限。
  注:x^y表示x的y次方。
  随着n的增大,底数越来越接近1,而指数趋向无穷大,那结果到底是趋向于1还是无穷大呢?其实,是趋向于2.71828……,不信你用计算器计算一下,分别取n=1,10,100,1000。但是由于一般计算器只能显示10位左右的数字,所以再多就看不出来了。
  e在科学技术中用得非常多,一般不使用以10为底数的对数。以e为底数,许多式子都能得到简化,用它是最“自然”的,所以叫“自然对数”。
  这里的e是一个数的代表符号,而我们要说的,便是e的故事。这倒叫人有点好奇了,要能说成一本书,这个数应该大有来头才是,至少应该很有名吧?但是搜索枯肠,大部分人能想到的重要数字,除了众人皆知的0及1外,大概就只有和圆有关的π了,了不起再加上虚数单位的i=√-1。这个e究竟是何方神圣呢?
  在高中数学里,大家都学到过对数(logarithm)的观念,也用过对数表。教科书里的对数表,是以10为底的,叫做常用对数(common
logarithm)。课本里还简略提到,有一种以无理数e=2.71828……为底数的对数,称为自然对数(natural
logarithm),这个e,正是我们故事的主角。不知这样子说,是否引起你更大的疑惑呢?在十进位制系统里,用这样奇怪的数为底,难道会比以10为底更「自然」吗?更令人好奇的是,长得这么奇怪的数,会有什么故事可说呢?
  这就要从古早时候说起了。至少在微积分发明之前半个世纪,就有人提到这个数,所以虽然它在微积分里常常出现,却不是随著微积分诞生的。那么是在怎样的状况下导致它出现的呢?一个很可能的解释是,这个数和计算利息有关。
  我们都知道复利计息是怎么回事,就是利息也可以并进本金再生利息。但是本利和的多寡,要看计息周期而定,以一年来说,可以一年只计息一次,也可以每半年计息一次,或者一季一次,一月一次,甚至一天一次;当然计息周期愈短,本利和就会愈高。有人因此而好奇,如果计息周期无限制地缩短,比如说每分钟计息一次,甚至每秒,或者每一瞬间(理论上来说),会发生什么状况?本利和会无限制地加大吗?答案是不会,它的值会稳定下来,趋近於一极限值,而e这个数就现身在该极限值当中(当然那时候还没给这个数取名字叫e)。所以用现在的数学语言来说,e可以定义成一个极限值,但是在那时候,根本还没有极限的观念,因此e的值应该是观察出来的,而不是用严谨的证明得到的。

回答2:

尤拉的自然对数底公式
(大约等于2.71828的自然对数的底——e)

尤拉被称为数字界的莎士比亚,他是历史上最多产的数学家,也是各领域(包含数学中理论与应用的所有分支及力学、光学、音响学、水利、天文、化学、医药等)最多著作的学者。数学史上称十八世纪为“尤拉时代”。

尤拉出生于瑞士,31岁丧失了右眼的视力,59岁双眼失明,但他性格乐观,有惊人的记忆力及集中力,使他在13个小孩子吵闹的环境中仍能精确思考复杂问题。

尤拉一生谦逊,从没有用自己的名字给他发现的东西命名。只有那个大约等于2.71828的自然对数的底,被他命名为e。但因他对数学广泛的贡献,因此在许多数学分支中,反而经常见到以他的名字命名的重要常数、公式和定理。

我们现在习以为常的数学符号很多都是尤拉所发明介绍的,例如:函数符号f(x)、π、e、∑、logx、sinx、cosx以及虚数i等。高中教师常用一则自然对数的底数e笑话,帮助学生记忆一个很特别的微分公式:在一家精神病院里,有个病患整天对着别人说,“我微分你、我微分你。”也不知为什么,这些病患都有一点简单的微积分概念,总以为有一天自己会像一般多项式函数般,被微分到变成零而消失,因此对他避之不及,然而某天他却遇上了一个不为所动的人,他很意外,而这个人淡淡地对他说,“我是e的x次方。”

这个微分公式就是:e不论对x微分几次,结果都还是e!难怪数学系学生会用e比喻坚定不移的爱情!

相对于π是希腊文字中圆周第一个字母,e的由来较不为人熟知。有人甚至认为:尤拉取自己名字的第一个字母作为自然对数。

而尤拉选择e的理由较为人所接受的说法有二:一为在a,b,c,d等四个常被使用的字母后面,第一个尚未被经常使用的字母就是e,所以,他很自然地选了这个符号,代表自然对数的底数;一为e是指数的第一个字母,虽然你或许会怀疑瑞士人尤拉的母语不是英文,可事实上法文、德文的指数都是它。
参考资料:http://xueyuanjoan.spaces.msn.com/blog/cns!bdeae6c120b5beba!489.entry

回答3:

自然对数是以常数e为底数的对数,记作lnN(N>0)。
在物理学,生物学等自然科学中有重要的意义,一般表示方法为lnx。数学中也常见以logx表示自然对数。
在1614年开始有对数概念,约翰·纳皮尔以及JostBürgi(英语:JostBürgi)在6年后,分别发表了独立编制的对数表,当时通过对接近1的底数的大量乘幂运算,来找到指定范围和精度的对数和所对应的真数,当时还没出现有理数幂的概念。

回答4:

http://xueyuanjoan.spaces.msn.com/blog/cns!bdeae6c120b5beba!489.entry

回答5:

对数的意义在于在自然科学中,它是一种普遍性存在的规律
以常数e为底数的对数叫做自然对数,记作nN(N>0)。自然对数在物理学,生物学等自然科学中有重要的意义。
对数的生物学意义
在连锁交换定律中,重组率或重组值是指双杂合体测交产生的重组型配子的比例,即重组率=重组配字数/总配子数(亲组合+重组和)×100%,重组是交换的结果,所以重组率(recombination fraction)通常也称作交换率(crossing over percentage)或交换值。可是仔细推敲起来,这两个数值是不尽相同。
如果我们假定,沿染色体纵长的各点上交换的发生大体上是随机确定的。那么可以这样认为,如果两个基因座相距很近,由交换而分开较少,重组率就低;如果两基因座离开很远,交换发生的次数较多,重组率就高。所以可以根据重组率的大小计算有关基因间的相对距离,把基因顺序地排列在染色体上,绘制出基因图。生物学家就是这样做的。
如果有关的两个基因座在染色体上分开较远,举例说重组率在12%-15%以上,那么进行杂交试验时,其间可能发生双交换或四交换等更高数目的偶数交换,形成的配子却仍然是非重组型的。这时如简单地把重组率看作数交换率,那么交换率就要被低估了。因为遗传图是以1%交换率作为图距单位的,所以如交换率低估了,图距自然也随之缩小了,这就需要校正。校正的公式较多,可根据自己得出的连锁与交换试验的结果,提出单是适用于某一生物的校正公式。一般来说,一个合适的校正公式应该满足下列两个条件:①最大的重组率不超过0.5或50%,因为这数值说明两个基因之间遵循自由组合定律;②较小的重组率应该大致上是加性的。常用的的较简单的公式是Haldane推导的作图函数R=[1-e^(-2x)]/2,式中R代表重组率,x代表交换率。这公式表示重组率与图距的关系,而图距的单位是1%交换率。
说明一下Haldane曲线的几点性质:①曲线的起始一小段基本上是直线,斜率接近于1,重组率可以直接看作是图距,所以重组率是加性的。②在曲线的曲度较大的区域,重组率就不是加性的了。当图距比较大,两端的基因的重组率就要小于相邻两个重组率之和,即Rab+Rbc>Rac,例如abc是三个连锁基因,两两间的重组率R值是非加性的,0.23+0.32>0.40。吧Haldane公式加以改写:x=-ln(1-2R)/2,把上面R值代入公式,求得x值如下:在0.31+0.51,稍大于0.81,x值大致上成为加性的了。③标记基因间的图距很大时,重组率与图距无关,接近或等于1/2。
所以重组率大致代表交换率,但当重组率逐渐增大时,重组率往往小于交换率,需要加以校正。在实际应用时,要看研究的生物而定。像黑腹果蝇那样,各染色体上定位的基因已经很多,标记的区域已划分得很细,就无需用作图函数来校正了。但对一种新的生物开始进行连锁研究,可供利用的标记基因很少,这是最好用作图函数来加以校正,以得到更接近实际的图距。