可惜不等式的积分形式怎么证

2025-02-01 07:45:18
推荐回答(3个)
回答1:

设f(x),g(x)在区间[a,b]可积,a≤b

∵对任意t∈R,有(tf(x)-g(x))²≥0

=>∫[a,b](tf(x)-g(x))²dx≥0

=>t²∫[a,b]f²(x)dx-2t∫[a,b]f(x)g(x)dx+∫[a,b]g²(x)dx≥0

记A=∫[a,b]f²(x)dx,B=2∫[a,b]f(x)g(x)dx,C=∫[a,b]g²(x)dx

则上式变为At²-Bt+C≥0,对任意t∈R成立

∴该二次函数判别式△=B²-4AC≤0

即(∫[a,b]f(x)g(x)dx)²≤(∫[a,b]f²(x)dx)(∫[a,b]g²(x)dx)

注:这里若a>b,该积分不等式也成立,只需把a,b交换证明即可。

扩展资料

从历史的角度讲,该不等式应称作Cauchy-Buniakowsky-Schwarz不等式【柯西-布尼亚科夫斯基-施瓦茨不等式】因为,正是后两位数学家彼此独立地在积分学中推而广之,才将这一不等式应用到近乎完善的地步。 

柯西不等式是由柯西在研究过程中发现的一个不等式,其在解决不等式证明的有关问题中有着十分广泛的应用,所以在高等数学提升中与研究中非常重要,是高等数学研究内容之一。

回答2:

你问的是柯西不等式的积分形式吧,叫做柯西-许瓦兹不等式,证明如下:

回答3:

柯西不等式二维形式的简单证明过程,你看看会不会应用呢