已知函数f(x)的定义域为R,且f(0)=2,对任意x∈R,都有f(x)+f′(x)>1,则不等式exf(x)>ex+1

2024-11-29 09:07:03
推荐回答(1个)
回答1:

令g(x)=exf(x)-ex-1,则g′(x)=exf(x)+exf′(x)-ex=ex[f(x)+f′(x)-1],
∵f(x)+f′(x)>1,
∴f(x)+f′(x)-1>0,
∴g′(x)>0,即g(x)在R上单调递增,
又f(0)=2,∴g(0)=e0f(0)-e0-1=2-1-1=0,
故当x>0时,g(x)>g(0),即exf(x)-ex-1>0,整理得exf(x)>ex+1,
∴exf(x)>ex+1的解集为{x|x>0}.
故选A.