在平面直角坐标系xOy中,F1,F2分别为椭圆x2a2+y2b2=1(a>b>0)的左、右焦点,B,C分别为椭圆的上、下顶

2024-12-14 23:15:03
推荐回答(1个)
回答1:

Rt△OF1B中,|OF1|=c,|OB|=b
∴|BF1|=

b2+c2
=a,得cos∠F1BO=
b
a

cos∠F1BF2=cos2∠F1BO=2cos2F1BO?1=
7
25

∴2?(
b
a
2-1=
7
25
,解之得
b
a
=
4
5

设D(m,n),得kBD
b?n
?m
kCD
?b?n
?m

∴kBD?kCD=
n2?b2
m2

∵D(m,n)在椭圆
x2
a2
+
y2
b2
=1
上,
m2
a2
+
n2
b2
=1
,得n2=b2(1-
m2
a2

由此可得kBD?kCD=
?
b2
a2
?m2
m2
=-
b2
a2
=-
16
25

又∵kBDkBF2=-
b
c
=-
b2
a2?b2
=-
b2
a2
1?
b2
a2
=-
4
3

∴kCD=
?
16
25
?
4
3
=
12
25
,即直线CD的斜率等于
12
25

故选:B