令X=a1/2次方+(a-2/1次方),则有:X²=a+1/a+2=3+2=5所以X=±√5即a1/2次方+(a-2/1次方)=±√5
a+1/a=3[(a^1/2)]+[(1/a)^1/2]^2=3[(a^1/2)]^2+2+[(1/a)^1/2]^2=5[(a^1/2)+(1/a)^1/2]^2=5(a^1/2)+(1/a)^1/2=±√5 a+1/a=3a>0所以(a^1/2)+(1/a)^1/2=√5