f(x)=(sinx+cosx)²+2cos2x-2
= sin²x+cos²x+2sinxcosx+2cos2x - 2
= 1+2sinxcosx+2cos2x - 2
= 2sinxcosx+2cos2x - 1
= sin2x+2cos2x-1
令cost=1/√5,sint=2/√5
f(x) = √5(sin2xcost+cos2xsint)-1 = √5sin(2x+t)-1
2x+t = 2kπ ± (π/2)
对称轴:x = kπ ± (π/4) -t/2,其中k∈Z,t=arcsin(2/√5)
2x+t∈(2kπ-π/2,2kπ+π/2)时单调增
故单调增区间:x∈(kπ-π/4-t/2,kπ+π/4-t/2),其中k∈Z,t=arcsin(2/√5)
x∈(π/4,3π/4)
2x∈(π/2,3π/2)
2x+t∈(π/2+arcsin(2/√5),3π/2+arcsin(2/√5))
(2/√5)/(√2/2) = √(8/5) >1
π/2>arcsin(2/√5)>π/4
当2x+t=3π/2时:
最小值f(x)min=-√5-1
当2x+t = 3π/2+arcsin(2/√5)时:
最大值f(x)max=√5sin(3π/2+arcsin(2/√5))-1
= √5cos【arcsin(2/√5)】-1
= √5×(-1/√5)-1
= -2