一道高中数学概率问题

2025-01-05 03:53:39
推荐回答(5个)
回答1:

设在棋子0站的概率为 a0 , 在1站的概率为 a1 ,在2站的概率为 a2 ,依此类推,在 98、99、100 站时概率分别为 a98 、a99 、a100
因为一开始就在0站,所以 a0 = 1
硬币掷出正反面的概率是一样的,所以第一次掷跳到 1站和2站的概率都是0.5
1站只能从0站跳过来,所以 a1 = 0.5a0
2站可能从0站跳过来,也可能从1站跳过来,所以 a2 = 0.5a0 + 0.5a1
依此类推,可得:
a0 = 1
a1 = 0.5a0
a2 = 0.5a0 + 0.5a1
a3 = 0.5a1 + 0.5a2
a4 = 0.5a2 + 0.5a3
a5 = 0.5a3 + 0.5a4
。。。。。。
a99 = 0.5a97 + 0.5a98
而第100站只能由98站跳过来,所以
a100 = 0.5a98
把上述式子,分别前后两式相加:
a0 + a1 = 1 + 0.5a0 -> a1 = 1- 0.5a0 -> a1 = 1 - 0.5
a1 + a2 = 0.5a0 + 0.5a0 + 0.5a1 -> a1 + a2 = a0 + 0.5a1 -> a2 = a0 - 0.5a1 = 1 - 0.5(1 - 0.5) -> a2 = 1 - 0.5 + 0.5^2
a2 + a3 = 0.5a0 + 0.5a1 + 0.5a1 + 0.5a2 -> a3 = 0.5a0 + a1 - 0.5a2 = 0.5 + 1 - 0.5 -0.5(1 - 0.5 + 0.5^2) -> a3 = 1 - 0.5 +0.5^3 -0.5^3
a3 + a4 = 0.5a1 + a2 + 0.5a3 -> a4 = 0.5(1 - 0.5) + (1 - 0.5 + 0.5^2) - 0.5(1 - 0.5 + 0.5^2 - 0.5^3) -> a4 = 1 - 0.5 + 0.5^2 - 0.5^3 + 0.5^4
同理推出
a98 = 1 - 0.5 + 0.5^2 - 0.5 ^3 + ...... + 0.5^98
a99 = 1 - 0.5 + 0.5^2 - 0.5 ^3 + ...... + 0.5^98 - 0.5^99
a99 = a98 - 0.5^99
a100 = 0.5a98
用等比数列求和公式可求出
a98 = 1*(1 - (-0.5)^99) / (1 - (-0.5)) = (1 + 0.5^99)/1.5
a99 = 1*(1 - (-0.5)^100) / (1 - (-0.5)) = (1 - 0.5^100)/1.5
那么跳到99站、100站的概率分别为:
a99 = (1 - 0.5^100)/1.5
a100 = 0.5(1 + 0.5^99)/1.5
a99 = (2 - 0.5^99)/3
a100 = (1 + 0.5^99)/3
则玩该游戏获胜的概率是 a99 = (2 - 0.5^99)/3 ,约为 2/3

回答2:

这个是选择题你就直接选那个50%就可以了。如果是计算题,需要长编大论而且麻烦的计算。
由于银币(质地均匀),所以出现正面是50%,出现反面是50%。
到达97的机率是50%,(97次正面的机率)+((95次正面+1次反面)的机率)。。。。。。(此处省略1000字)
到达98的机率是50%,(49次反面的机率)+((48次反面+2次正面)的机率)。。。。。。
(此处省略1000字)
然后,到达97时,再来一次反面,获胜,1/2 x 1/2 =1/4
到达98时,再来一次正面,获胜,1/2 x 1/2 =1/4
上述两种互不重复,所以1/4 +1/4 =1/2 就是50% 。

总之,这个题目的突破口在于97,98两步,你能够计算出,到达97和98的机率就迎刃而解了。

回答3:

当它到达97步,走一次得到反面获胜
当它到达98步,走一次得到正面获胜
由此可以对两种情况进行猜测:
97步:前面的可以猜分为1个正其他的反,2个正其他的反,……95个正1个反,全是正
98步:前面的可以猜分为2个正其他的反,4个正其他的反,……96个正1个反,全是正
由此我们可以得到它们每一次的概率
由于计算起来可能较为繁琐,就不算了,靠你自己

回答4:

http://zhidao.baidu.com/question/196844459.html?si=1

回答5:

三楼回答正确