解:
定义域:kπ-π/2<2x-π/3<kπ+π/2
即kπ/2-π/12<x<kπ/2+5π/12 k∈Z
周期为kπ/2,最小正周期为π/2 k∈N*
函数在定义域内都是单调递增的.
kπ/2-π/12<x<kπ/2+5π/12 k∈Z
定义域:
2x+π/3≠kπ+π/2
∴x≠kπ/2+π/12(k∈z)
周期:π/2
单调增区间:kπ≤2x+π/3<kπ+π/2,所以(kπ-π/3)/2≤x<(kπ+π/6)/2
单调减区间:kπ-π/2<2x+π/3<kπ,所以(kπ-5π/6)/2≤x<(kπ-π/3)/2
谢谢采纳
vxcxcv