独立样本T检验

2025-01-08 08:45:17
推荐回答(3个)
回答1:

t检验过程,是对两样本均数(mean)差别的显著性进行检验。惟t检验须知道两个总体的方差(Variances)是否相等;t检验值的计算会因方差是否相等而有所不同。也就是说,t检验须视乎方差齐性(Equality of Variances)结果。所以,SPSS在进行t-test for Equality of Means的同时,也要做Levene's Test for Equality of Variances 。

1.
在Levene's Test for Equality of Variances一栏中 F值为2.36, Sig.为.128,表示方差齐性检验「没有显著差异」,即两方差齐(Equal Variances),故下面t检验的结果表中要看第一排的数据,亦即方差齐的情况下的t检验的结果。

2.
在t-test for Equality of Means中,第一排(Variances=Equal)的情况:t=8.892, df=84, 2-Tail Sig=.000, Mean Difference=22.99
既然Sig=.000,亦即,两样本均数差别有显著性意义!

3.
到底看哪个Levene's Test for Equality of Variances一栏中sig,还是看t-test for Equality of Means中那个Sig. (2-tailed)啊?
答案是:两个都要看。
先看Levene's Test for Equality of Variances,如果方差齐性检验「没有显著差异」,即两方差齐(Equal Variances),故接著的t检验的结果表中要看第一排的数据,亦即方差齐的情况下的t检验的结果。
反之,如果方差齐性检验「有显著差异」,即两方差不齐(Unequal Variances),故接著的t检验的结果表中要看第二排的数据,亦即方差不齐的情况下的t检验的结果。

4.
你做的是T检验,为什么会有F值呢?
就是因为要评估两个总体的方差(Variances)是否相等,要做Levene's Test for Equality of Variances,要检验方差,故所以就有F值。

-------------------------------------------------------------------
不知这算不算详细回答了你所有的问题。

回答2:

t检验是比较两组数据之间的差异,有无统计学意义;t检验的前提是,两组数据来自正态分布的群体,数据的方差齐,满足独立性。

独立样本t检验(各实验处理组之间毫无相关存在,即为独立样本),该检验用于检验两组非相关样本被试所获得的数据的差异性。

扩展资料:

所选择的检查方法必须符合其适用条件。理论上,即使样本量很小,也可以进行t检验。(例如,如果样本量为10,有些学者认为即使是更小的样本量也可以),只要每组的变量都是正态分布的,两组之间的差方将不会有显著差异。如上所述,数据的正态假设可以通过观察数据的分布或进行正态检验来估计。

方差齐性假设可以用F检验,更有效的是用Levene检验。如果不满足这些条件,可以使用修正后的t检验,或者使用非参数检验代替t检验来比较两组之间的均值。

参考资料来源:百度百科-t检验

专业老师在线权威答疑 zy.offercoming.com

回答3:

给mm问好。建议找本数理统计书看下,还可去科学数学之类的地方问一下。