在球坐标系中波函数怎么表示

2024-12-15 07:17:24
推荐回答(1个)
回答1:

球坐标是三维坐标系的一种,用以确定三维空间中点、线、面以及体的位置,它以坐标原点为参考点,由方位角、仰角和距离构成。

例解

假设P(x,y,z)为空间内一点,则点P也可用这样三个有次序的数(r,θ,φ)来确定,其中r为原点O与点P间的距离;θ为有向线段OP与z轴正向的夹角;φ为从正z轴来看自x轴按逆时针方向转到OM所转过的角,这里M为点P在xOy面上的投影;。这样的三个数r,θ,φ叫做点P的球面坐标,显然,这里r,θ,φ的变化范围为r∈[0,+∞),θ∈[0, π], φ∈[0,2π] ,如图1所示。

当r,θ或φ分别为常数时,可以表示如下特殊曲面:r = 常数,即以原点为心的球面;θ= 常数,即以原点为顶点、z轴为轴的圆锥面;φ= 常数,即过z轴的半平面。

与直角坐标系间的转换

1).球坐标系(r,θ,φ)与直角坐标系(x,y,z)的转换关系:

x=rsinθcosφ

y=rsinθsinφ

z=rcosθ

2).反之,直角坐标系(x,y,z)与球坐标系(r,θ,φ)的转换关系为:

球坐标系下的微分关系

在球坐标系中,沿基矢方向的三个线段元为:

dl(r)=dr, dl(φ)=rsinθdφ, dl(θ)=rdθ

球坐标的面元面积是:

dS=dl(θ)* dl(φ)=r^2*sinθdθdφ

体积元的体积为:

dV=dl(r)*dl(θ)*dl(φ)=r^2*sinθdrdθdφ