(I)∵直三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AC?平面ABC,
∴AC⊥AA1,
又∵∠BAC=90°,即AC⊥AB,且AA1∩AB=A,∴AC⊥平面AA1B1B,
∵A1B?平面AA1B1B,∴AC⊥A1B;
(II)∵四边形BB1C1C为平行四边形,得B1C1∥BC,
∴∠A1BC1(或其补角)是异面直线A1B与B1C1所成的角.
∵AC⊥A1B,A1C1∥AC,∴A1C1⊥A1B.
由此可得Rt△A1BC1中,∠A1BC1=60°,
∵A1C1=AC=1,∴A1B=
3
Rt△A1B1B中,A1B1=AB=1,可得BB1=
=
A1B2?A1B12
,
2
∵A1C1∥AC,AC⊥平面AA1B1B,∴A1C1⊥平面AA1B1B,
∵A1C1?平面A1BC1,∴平面A1BC1⊥平面AA1B1B,
过B1点作B1E⊥AB于点E,则B1E⊥平面A1BC1,
Rt△A1B1B中,B1E=
=
A1B1?BB1
A1B
,即点B1到平面A1BC1的距离等于
6
3
.
6
3
∵D是BB1的中点,∴点D到平面A1BC1的距离d=
×
1 2