解:∵X~B(N,p),∴E(X)=NP,D(X)=Np(1-p)。
由样本Xi(i=1,2,……,n)的数据,有样本均值x'=(1/n)∑xi,样本方差B2=(1/n)∑(xi-x')²。
按照矩估计的定义,有x'=E(X)=NP①,B2=D(X)=Np(1-p)②。将①代入②,∴B2=(1-p)x'。
∴p=1-(B2)/x'=(x'-B2)/x'。将p再代入①,∴N=(x')²/(x'-B2)。
在概率论和统计学中,二项分布是n个独立的是/非试验中成功的次数的离散概率分布,其中每次试验的成功概率为p。这样的单次成功/失败试验又称为伯努利试验。
性质
(一)二项分布是离散型分布,概率直方图是跃阶式的。因为x为不连续变量,用概率条图表示更合适,用直方图表示只是为了更形象些。
1.当p=q时图形是对称的
2.当p≠q时,直方图呈偏态,pq的偏斜方向相反。如果n很大,即使p≠q,偏态逐渐降低,最终成正态分布,二项分布的极限分布为正态分布。故当n很大时,二项分布的概率可用正态分布的概率作为近似值。何谓n很大呢?一般规定:当p
q且nq≥5,这时的n就被认为很大,可以用正态分布的概率作为近似值了。
(二)二项分布的平均数与标准差
如果二项分布满足pq,np≥5)时,二项分布接近正态分布。
解:∵X~B(N,p),∴E(X)=NP,D(X)=Np(1-p)。
由样本Xi(i=1,2,……,n)的数据,有样本均值x'=(1/n)∑xi,样本方差B2=(1/n)∑(xi-x')²。
按照矩估计的定义,有x'=E(X)=NP①,B2=D(X)=Np(1-p)②。将①代入②,∴B2=(1-p)x'。
∴p=1-(B2)/x'=(x'-B2)/x'。将p再代入①,∴N=(x')²/(x'-B2)。
供参考。