设cos(π⼀4+x)=3⼀5,x∈(3π⼀4,7π⼀4),求(sin2x+2sin²x)⼀(1-tanx)

高一数学题
2024-12-17 16:04:59
推荐回答(1个)
回答1:

3π/4π<π/4+x<2π
所以sin(π/4+x)<0
sin²(π/4+x)+cos²(π/4+x)=1
所以sin(π/4+x)=-4/5
2sin(π/4+x)cos(π/4+x)=-24/25
sin[2(π/4+x)]=-24/25
sin(π/2+2x)=cos2x=-24/25

0则3π/2<π/4+x<7π/4
5π/45π/2<2x<3π
所以sin2x>0
sin²2x+cos²2x=1
所以sin2x=7/25

原式=(2sinxcosx+2sin²x)/(1-sinx/cosx)
=2sinxcosx(sinx+cosx)/(cosx-sinx)
=2sinxcosx(sinx+cosx)²/(cos²x-sin²x)
=sin2x(sin²x+cos²x+2sinxcosx)/cos2x
=sin2x(1+sin2x)/cos2x
=-28/75