大一高等数学A题、1⼀( n^2+1)+2⼀(n^2+2)+……+n⼀(n^2+n) 的极限怎么求~

2024-12-27 15:29:57
推荐回答(3个)
回答1:

因为n^2+1=1/(n^+n)+2/(n^+n)+3/(n^+n)+........+n/(n^+n)=(1+2+.......+n)/(n^+n)=1/2.同时原式<=1/(n^2+1)+2/(n^2+1)+3/(n^2+1)+........+n/(n^2+1)=(1+1/n)/2.而(1+1/n)/2)的极限是1/2。所以原式的极限=1/2。

回答2:

设[1/(n^2+1)+2/(n^2+2)+....+n/(n^2+n)]=S
则S<[1/(n^2+1)+2/(n^2+1)+....+n/(n^2+1)]=(1+2+……+n)/(n^2+1)=n*(n+1)/2(n^2+1)
因为S>[1/(n^2+n)+2/(n^2+n)+....+n/(n^2+1)]=n*(n+1)/2(n^2+n)
且limn*(n+1)/2(n^2+1)=1/2(n趋于无穷)
limn*(n+1)/2(n^2+n)=1/2(n趋于无穷)
lim[1/(n^2+1)+2/(n^2+2)+....+n/(n^2+n)] n趋于无穷=1/2

回答3:

lim(n→∞)[1/(n^2+n+1)+2/(n^2+n+2)+3/(n^2+n+3)+……+n/(n^2+n+n)]= lim(n→∞)[(1+2+...+n)/(n^2+n+1)]=lim(n→∞)1/2*[n(n+1)/(n^2+n+1)]=1/2