因为n^2+1
设[1/(n^2+1)+2/(n^2+2)+....+n/(n^2+n)]=S
则S<[1/(n^2+1)+2/(n^2+1)+....+n/(n^2+1)]=(1+2+……+n)/(n^2+1)=n*(n+1)/2(n^2+1)
因为S>[1/(n^2+n)+2/(n^2+n)+....+n/(n^2+1)]=n*(n+1)/2(n^2+n)
且limn*(n+1)/2(n^2+1)=1/2(n趋于无穷)
limn*(n+1)/2(n^2+n)=1/2(n趋于无穷)
lim[1/(n^2+1)+2/(n^2+2)+....+n/(n^2+n)] n趋于无穷=1/2
lim(n→∞)[1/(n^2+n+1)+2/(n^2+n+2)+3/(n^2+n+3)+……+n/(n^2+n+n)]= lim(n→∞)[(1+2+...+n)/(n^2+n+1)]=lim(n→∞)1/2*[n(n+1)/(n^2+n+1)]=1/2