∵1=(a2+b2)(c2+d2)=(ac)2+a2×d2+b2×c2+(bd)2,又∵ad=bc,∴1=(ac)2+a2×d2+b2×c2+(bd)2=(ac)2+2×a2×d2+(bd)2=(ac)2+2acbd+(bd)2∴1=(ac+bd)2∵a,b,c,d>0,∴ac+bd>0∴ac+bd=1.