(1)证明:函数f(x)的定义域为R,对任意x1,x2∈R,设x1<x2,
则f(x1)-f(x2)=
=2?2x1+2?2?2x2?2
(2x1+1)(2x2+1)
.2(2x1?2x2)
(2x1+1)(2x2+1)
∵y=2x是R上的增函数,且x1<x2,
∴2x1-2x2<0,
∴f(x1)-f(x2)<0.
即f(x1)<f(x2),
∴函数f(x)为R上的增函数;
(2)解:若函数f(x)为奇函数,
则f(0)=a-1=0,
∴a=1.
当a=1时,f(x)=1-
.2
2x+1
∴f(-x)=
=-f(x),
2?x?1
2?x+1
此时f(x)为奇函数,满足题意,
∴a=1.