函数无界性怎么证?

2024-12-16 12:04:16
推荐回答(1个)
回答1:

证明函数有界的步骤:证明有界的思路是:存在一个正数M,使对所有x,满足|f(x)|M。

证明有界的思路是:存在一个正数M,使对所有x,满足|f(x)|

证明无界的思路是:对任意正数M,总存在x,使得|f(x)|>M。

若存在两个A和B,对一切x∈Df恒有A≤f(x)≤B,则称函数y=f(x)在Df内是有界函数,否则为无界函数。

f(x)=1/(1+x2)

x→0f(x)→1

x→∞f(x)→0

0≤f(x)≤1所以函数y=f(x)在Df内是有界函数。