在两圆交点的圆系方程为:x²+ y²-4x+2y+λ(x²+y²-2y-4)=0(不包括c2,且λ≠-1)即(1+λ)x²+(1+λ)y²-4x+2(1-λ)y-4λ=0圆心C:(2/(1+λ),(λ-1)/(1+λ))因C在l上故4/(1+λ)+4(λ-1)/(1+λ)-1=0解之λ=1/3即C:x²+ y²-3x+y-1=0