求过两圆C1:X^2+Y^2-4X+2Y=0和圆C2:X^2+Y^2-2Y-4=0的交点,且圆心在直线2x+4y-1=0上的圆的方程 不要用圆系

2025-01-02 13:54:39
推荐回答(1个)
回答1:

在两圆交点的圆系方程为:
x²+ y²-4x+2y+λ(x²+y²-2y-4)=0(不包括c2,且λ≠-1)
即(1+λ)x²+(1+λ)y²-4x+2(1-λ)y-4λ=0
圆心C:(2/(1+λ),(λ-1)/(1+λ))
因C在l上
故4/(1+λ)+4(λ-1)/(1+λ)-1=0
解之λ=1/3
即C:x²+ y²-3x+y-1=0