三秩相等是指矩阵的列向量组的秩(简称列秩)、行向量组的秩(简称行秩)和通过子式定义的秩(k阶子式是指一个m×n的矩阵中任取k(k<=m,k<=n)行k列拼起来构成的新矩阵的行列式,矩阵的秩等于其阶数最大的非零子式的阶数)相等。
行秩与列秩比较常用。在计算中,行秩与列秩可用于计算矩阵的秩(高斯消元法)。在证明中,行秩与列秩实质上将矩阵的秩转化为向量组的秩,故可有向量的性质推证矩阵性质。通过子式定义的秩用的较少,在一些特殊的证明中可能会比较便捷。
对一个 n 行 n 列的非零矩阵 A,如果存在一个矩阵 B 使 AB = BA =E(E是单位矩阵),则 A 为非奇异矩阵(或称可逆矩阵),B为A的逆阵。
扩展资料:
矩阵的列秩和行秩总是相等的,因此它们可以简单地称作矩阵 A的秩。通常表示为 rk(A) 或 rank A。
m× n矩阵的秩最大为 m和 n中的较小者。有尽可能大的秩的矩阵被称为有满秩;类似的,否则矩阵是秩不足的。
一个矩阵 A的秩还可定义为fA的像的维度(像与核的讨论参见线性映射)。矩阵 A称为 fA的变换矩阵。这个定义的好处是适用于任何线性映射而不需要指定矩阵,因为每个线性映射有且仅有一个矩阵与其对应。秩还可以定义为 n减 f的核的维度;秩-零化度定理声称它等于 f的像的维度。
参考资料来源:百度百科--秩
参考资料来源:百度百科--线性代数
三秩相等是一个非常有用的结论,就是矩阵的行秩=列秩=秩。在任何时候三秩都相等。在后面的学习中会不断用到这个结论。
大哥你来错地方了