"""用itertools的组合工具combinations生成所有组合方案"""
import itertools
def sameSums(alst):
allsummary = sum(alst)
if allsummary % 2:
# 数组总和不能被2整除既不可均分为等值的两部分
return False
halfsum = allsummary / 2 # 总和的半值为检测目标
for l in xrange(1, len(alst)/2+1):
# 方案第一部分的数组长度从1位到数组半长
for sub in list(itertools.combinations(alst, l)):
# 按指定长度遍历组合方案
if sum(sub) == halfsum:
# 若当前方案的和为目标值则当前方案有效
# another为方案的第二部分数据列表
another = alst[:]
for x in sub:
another.pop(another.index(x))
print sub, tuple(another)
return True
return False
def optsamesum(alst):
"""优化一下"""
allsummary = sum(alst)
if allsummary % 2:
return False
halfsum = allsummary / 2
if max(alst) > halfsum:
return False
sortedlst = sorted(alst)[::-1]
for l in xrange(1, len(alst)/2+1):
for sub in list(itertools.combinations(sortedlst, l)):
if sum(sub) < halfsum:
break
if sum(sub) == halfsum:
another = sortedlst[:]
for x in sub:
another.pop(another.index(x))
print list(sub), another
return True
return False
if __name__ == "__main__":
sameSums([4, 7, 6, 3])
sameSums([3, 3])
sameSums([4, 12, 16])
sameSums([5, 1])
当做一个背包问题来解,判断最大装入是否等于背包的容量,算法具体意义请百科,示例如下:
def test(a):
total_value = sum(a)
if sum(a)%2 != 0:
return False
#背包载重量
m = total_value/2
#n的个数
n=len(a)-1
x = [False for raw in range(n + 1)]
v = 0
optp = [[0 for col in range(m + 1)] for raw in range(n + 1)]
#计算optp[i][j]
for i in range(1, n + 1):
for j in range(1, m + 1):
optp[i][j] = optp[i - 1][j]
if (j >= a[i]) and (optp[i - 1][j - a[i]] + a[i] > optp[i - 1][j]):
optp[i][j] = optp[i - 1][j - a[i]] + a[i]
#递推装入背包的物体
j = m
for i in range(n, 0, -1):
if optp[i][j] > optp[i - 1][j]:
x[i] = True
j = j - a[i]
#返回最大价值
v = optp[n][m]
return v == m
#test...
a = [21,5,38,11,10,17,15,27,25,44,22,8,26,13,16,\
37,1,24,31,19,2,14,28,3,33,23,43,20,12,14]
b = [4,7,6,3]
c = [3,3]
d = [5,1]
e = [4,12,16]
print test(a)
print test(b)
print test(c)
print test(d)
print test(e)
#...test