一道不定积分计算题

请问划红线部分是如何得到的?
2024-11-06 21:44:21
推荐回答(1个)
回答1:

你们老师难道都没有说过利用定积分的定义求极限吗?请你记住我接下来说的每一个字,以后遇到同样的问题就套这个方法。在[0,1]上求f(x)的定积分,定义是说先插入任意个分点,把区间分成任意多的小段Δxi。再在每个小段上任取一点xi,求函数值f(xi)。相乘,求和,再令Δxi→0取和式极限。如果这个极限值与区间的分法以及点的取法无关,那么就把这个极限值称为定积分。从一般到特殊,既然区间可以任意分,那我就把[0,1]n等分,这样一来每一小段长为1/n。既然点可以任意取,那我就取每个小区间的右端点。注意区间n等分之后,第i个小区间就是[(i-1)/n,i/n],所以右端点是i/n。相乘,区间长度乘以函数值是1/n*f(i/n),再把这些全部加起来,注意到每项都有1/n,所以提公因式,1/n*[f(i/n)+f(2/n)+...+f(n/n)]。最后令区间长度趋向零取极限,区间长度是1/n,所以1/n→就等价于n→∞,所以就变成lim(n→∞)1/n*[f(1/n)+f(2/n)+...+f(n/n)]。刚刚说了这个值就是f(x)在[0,1]上的定积分,所以凡是叫你求形如1/n*Σf(i/n)的极限的,请你全部套定积分的定义做。