对f(x,y)=x^3+y^3-3x+3y-2求x的偏导数,令偏导数中y`=0,反解x=1或x=-1.从而其极值点为(1,1),(-1,0)
对x^3+y^3-3x+3y-2=0求导得3x^2+3y^2*y'-3+3y'=0,所以(y^2+1)y'=1-x^2,y'=(1-x^2)/(1+y^2),由y'=0得x=土1,x=1时y^3+3y-4=0,解得y=1;x=-1时y^3+3y=0,解得y=0.-10,y是增函数,所以y极小值=0,y极大值=1.