解:
令
S=1/2+1/4+1/8+1/16+...+1/2^n ①
乘以1/2
则有
1/2S=1/4+1/8+1/16...+1/2^(n+1) ②
①-②得
S-1/2S=1/2-1/2^(n+1)
1/2S=1/2-1/2^(n+1)
即S=1-1/2^n
1/2+1/4+1/8+...+1/2的n次方
=(1-1/2)+(1/2-1/4)+(1/4-1/8)+...+(1/2的n-次方-1/2的n次方 )
=1-1/2+1/2-1/4+1/4-1/8+...+1/2的n-次方-1/2的n次方
=1-1/2的n次方
1/2+1/4=3/4,再加1/8=7/8,再加1/16=15/16,分子总比分母少1。所以,加到二的n,次方之一结果就是(2的n次方_1)/2的n次方。