就是分数少了点
---------------------------------------------------------------------------------------------
32.7 Springs serving also as torque and thrust members
32.7 弹簧还可以作为扭力和推力构件
This system, Fig. 32.3, known as the Hotchkiss drive, is the most widely used.
此系统被称为霍奇基斯传动,如图32.3 所示,它是最为广泛使用的传动装置。
The springs A are rigidly bolted to the axle casing B. Their front ends are pivoted in brackets on the frame or vehicle structure, and their rear ends connected to the structure by means of either swinging links, or shackles C. or simply sliding in brackets as in Figs 35.7 and 37.18.
弹簧A 被螺栓紧固在轴箱B 上。它们的前端使用枢轴链接方式固定在框架或车辆结构上的支架内, 后端则通过摇杆、钩链C 或仅在支架上活动与结构连接在一起,如示图35.7 和37.18。
Obviously torque reaction causes the springs to flex, or wind up, as shown exaggeratedly in Fig. 32.4.
很显然反作用扭力促使弹簧弯曲或收卷,如示图32.4。
Brake torque of course would flex them in the opposite direction.
制动扭力当然会反方向使它们弯曲。
Since the front ends of the springs are anchored to the pins on the structure, they will transmit drive thrust and brake drag.
因为弹簧的前端部分被锚定在结构的销栓上,它们会传送驱动推力和制动阻力。
The freedom of their rear ends to move fore and aft of course allows for variations in the curvature, or camber, of the spring with vertical deflection.
它们后部的前后自由移动自然允许了弹簧垂直挠度的弯曲度和外倾角发生变化。
Wind-up of the springs under brake or drive torque causes the axle to rotate through a small angle, causing its nose either to lift, as in Fig. 32.4, or to drop.
在制动或驱动扭力的作用下,弹簧的收卷引发车桥小角度的转动,从而促使桥端尖端上升或下降,如示图32.4。
In the illustration, the spring wind-up has shifted the alignment of the final drive bevel pinion shaft from its normal attitude LO to LN, in which circumstances the propeller shaft would be subjected to severe bending loads were it not for the universal joints at O and M.
在示图中,弹簧的收卷已经将主减速器的圆锥小齿轮轴从正常属性LO转换到LN,在这种情况下,如果不是万向节在O 和M 位置的话,传动轴就会承受到巨大的弯曲负荷。
When the axle moves upwards relative to the carriage unit, it must move in the arc of a circle whose centre is approximately the axis of the pivot pin at the front end of the spring.
当车桥做相对于车架单元的向上移动时,它必须是在一个圆的圆弧上移动,这个圆的圆心大概在弹簧前端曲轴销的轴上。
The propeller shaft, on the other hand, must move on the arc of a circle centred on its front universal joint.
另一方面,驱动轴必须在以它的前万向节为圆心的圆上做圆弧运动。
Because these two centres are not coincident, the distance between the front universal joint and the forward end of the bevel pinion shaft will vary as the propeller shaft swings up and down.
由于这两个圆心并不在同一个位置上,当驱动轴上下摆动时,前万向节和圆锥小齿轮轴的前末端之间的距离不发生变化。
This variation is accommodated by the incorporation of a sliding joint somewhere in the drive line between the gearbox output shaft and bevel pinion in the axle.
在车桥内变速箱输出轴和圆锥小齿轮之间的传动轴装置上,某个位置的滑动接头共同调节这个变化。
Usually a sliding splined coupling is formed on a fork of one of the universal joints, but sometimes a universal joint of the pot type, as for example in Fig. 26.12, is used.
通常情况下,在其中一个万向节叉上就可以构成一个的滑动的齿槽联轴节, 但是有时候则使用球笼式万向节,如示图26.12。
The example illustrated is the Birfleld Rzeppa constant-velocity joint, another would be the very neat and simple universal joint used on the inner ends of the swinging halfshafts of the 1955 Fiat 600 rear-engine car.
示图中为球笼式等速万向节,而在1955菲亚特600后置发动机汽车上,摇摆半轴的内端上使用的万向节则非常轻巧简单。<
In the latter instance a rubber joint at the outboard end of each shaft accommodated the cyclic variations in velocity.
在下一个示图中,各个轴的外端上的橡胶接头则用来调节速度的周期性变化。
Rotation of the axle about a longitudinal axis, for example if one wheel only rises, is accommodated mainly by flexure of the springs, in a torsional sense, of rubber bushes, and by deflections of the shackles or within clearances in sliding end fittings.
如当只有一个车轮抬起时,则主要由弹簧的弯曲,从扭矩上说,橡胶衬套的弯曲,和钩链挠度或在滑动端连接件间的间隙来调节纵轴的轴转动。
For cross-country vehicles, however, special forms of connection of the spring ends to the frame are sometimes used to isolate the springs from such twisting effects.
但是对于越野汽车,弹簧端连接到车架的特殊连接形式有时用于防止弹簧受到扭曲影响。
Figs 37.13 to 37.15.
示图37.13 到示图 37.15。
----------------------------------------------------------------------------------------------------------------
Copyright@2010 Lawrence All rights reserved
32.7林斯现任委员也扭矩和推力该系统图。 32.3,作为霍奇基斯车道,是一种最广泛的应用。一个是硬性的弹簧固定在半轴套管前端二是无所不能他们在对车辆结构的框架或支架,和他们的后方两端连接的任一链接方式摆动的结构,或束缚C或干脆括号内滑动如在图35.7和37.18。显然扭矩反应会导致弹簧弯曲,或清盘,如图所示夸张地研究。 32.4。制动力矩当然会弯曲在相反的方向。由于前面的弹簧固定在结构上的针脚结束后,他们将发送驱动的推力和制动阻力。后方自己的目的自由移动船头和船尾当然可以竖向挠度变化的曲率,或拱,在春季。停业的泉水或驱动器下的制动力矩的原因,通过一个小角度的旋转轴,导致它的鼻子或者解除,如图。 32.4,或下降。在图中,春风行动已转移了对齐
最后的驱动器从正常的态度,劳锥齿轮轴的法律公告,在何种情况下螺旋桨轴将会受到严重弯曲载荷,如果不是于O和M的万向节
当向上移动轴相对于运输单位,必须朝着一个圆,圆心大约在春季结束前支点销轴弧线。螺旋桨轴,另一方面,必须继续前进,在其前面的万向节为中心的圆弧。由于这两个中心不重合,两者前万向节和锥齿轮轴的前端的距离会有所不同的螺旋桨轴的上下波动。这种变化是由一个容纳滑动联合团之间的某个地方,变速箱输出轴和锥齿轮轴驱动线。通常一个滑动花键上形成一个耦合的万向节的一叉,但有时在锅底型万向节,为图的例子。 26.12,是用来。这个例子说明是Birfleld Rzeppa等速接头,另一个将是非常整洁和简单的万向节的菲亚特600在1955年后置引擎车的摆动halfshafts的内端使用。在后一种情况的橡胶在入住速度的周期性变化的每一个轴外侧端关节。
旋转的轴约纵轴例如,如果一个轮只上涨,主要是由柔性容纳的泉水,对扭转意义上的橡胶衬套,并通过内部的束缚中变形或滑动端接头间隙。对于越野车,然而,特殊的弹簧连接两端的框架形式有时被用来隔离泉水从这种扭曲的影响。图37.13至37.15。
那个快乐软件站你是瞎子还是什么的?
人家都说了不要软件翻译你还这么复制粘贴,典型的不负责任