(x^2+4x+3)(x^2+12x+35)+15=(x+1)(x+3)(x+5)(x+7)+15=(x^2+8x+7)(x^2+8x+15)+15设t=x^2+8x+11,上式=(t-4)(t+4)+15=t^2-16+15=(t-1)(t+1)=(x^2+8x+10)(x^2+8x+12)=(x+4+√6)(x+4-√6)(x+2)(x+6).
设Y=x+2,z=x+3原式变为(y^2-1)(z^2-1)+15=(y+1)(y-1)(z+1)(z-1)+15