先考察1/n+2/n+...+(n-1)/n=(1+2+...+n-1)/n
高中数列里面有个公式1+2+...+i=i*(i+1)/2,(具体推导我就不在这里写了,你想要了解的话在网上搜“等差数列求和”这个关键字)
直接代上面的公式,则1/n+2/n+...+(n-1)/n=[(n-1)*n/2]/n=(n-1)/2
所以原式=(1/2)+(1/3+2/3)+...+(1/60+2/60+...+59/60)
=1/2+2/2+3/2+...+59/2
=(1+2+...+59)/2
再次使用上面的公式,原式=(59*60/2)/2=1770/2