(1)下面的(a)、(b)、(c)、(d)为四个平面图.数一数,每个平面图各有多少个顶点?多少条边?它

2025-01-24 08:40:53
推荐回答(1个)
回答1:

(1)填表如下:
顶点数 边数 区域数
(a) 4 6 3
(b) 8 12 5
(c) 6 9 4
(d) 10 15 6
(2)由该表可以看出,所给四个平面图的顶点数、边数及区域数之间有下述关系:
4+3-6=1
8+5-12=1
6+4-9=1
10+6-15=1
所以,我们可以推断:任何平面图的顶点数、边数及区域数之间,都有下述关系:顶点数+区域数-边数=1.
(3)由上面所给的关系,可知所求平面图的边数.
边数=顶点数+区域数-1
=999+999-1
=1997(条);
注:本题第二问中的推断是正确的,也就是说任何平面图的顶点数、区域数及边数都能满足我们所推断的关系.当然,平面图有许许多多,且千变万化,然而不管怎么变化,顶点数加区域数再减边数,最后的结果永远等于1,这是不变的.因此,顶点数+区域数-边数=1;就称为平面图的不变量(有时也称为平面图的欧拉数--以数学家欧拉的名字命名).
答:(2)一个平面图的顶点数、边数、区域数之间有什么关系是:边数=顶点数+区域数-1;(3)根据以上关系确定这个图有1997条边.