因为φ(x)=f(x,f(x,x)),
所以,
=fx′+fy′(fx′+fy′),dφ dx
从而,
φ3(x)=3φ2(x)d dx
φ(x)d dx
=3φ2(x)(fx′+fy′(fx′+fy′)).
代入x=1,可得:
φ3(x)|x=1=3f2(1,f(1,1))(fx′(1,f(1,1))+fy′(1,f(1,1))(fx′(1,1)+fy′(1,1)))d dx
=3f2(1,1)(fx′(1,1)+fy′(1,1)(fx′(1,1)+fy′(1,1)))
=3×(2+3×(2+3))
=51.