根号81的平方根是±9。
一个正数有两个实平方根,它们互为相反数,负数没有平方根,0的平方根是0。被开方数越大,对应的算术平方根也越大(对所有正数都成立)。
如果知道了这两个平方根的一个,那么就可以及时的根据相反数的概念得到它的另一个平方根。
扩展资料:
负数在实数系内不能开平方。只有在复数系内,负数才可以开平方。负数的平方根为一对共轭纯虚数。例如:-1的平方根为±i,-9的平方根为±3i,其中i为虚数单位。
因为每次补数需要补两位,所以被开方数不只一个数位时,要保证补数不能夹着小数点。例如三位数,必须单独用百位进行运算,补数时补上十位和个位的数。
根号81的平方根是±9。
平方根,又叫二次方根,表示为〔±√ ̄〕,其中属于非负数的平方根称之为算术平方根(arithmetic square root)。一个正数有两个实平方根,它们互为相反数,负数没有平方根,0的平方根是0。
公式
被开方数越大,对应的算术平方根也越大(对所有正数都成立)。
一个正数如果有平方根,那么必定有两个,它们互为相反数。显然,如果知道了这两个平方根的一个,那么就可以及时的根据相反数的概念得到它的另一个平方根。
以上内容参考:百度百科-平方根
根号81的平方根是±9
平方根,又叫二次方根,表示为〔±√ ̄〕,其中属于非负数的平方根称之为算术平方根(arithmetic square root)。一个正数有两个实平方根,它们互为相反数,负数有两个共轭的纯虚平方根。
扩展资料:
计算公式:
如果一个非负数x的平方等于a,即 , ,那么这个非负数x叫做a的算术平方根。a的算术平方根记为 ,读作“根号a”,a叫做被开方数(radicand)。求一个非负数a的平方根的运算叫做开方。
结论:被开方数越大,对应的算术平方根也越大(对所有正数都成立)。
一个正数如果有平方根,那么必定有两个,它们互为相反数。显然,如果知道了这两个平方根的一个,那么就可以及时的根据相反数的概念得到它的另一个平方根。
负数在实数系内不能开平方。只有在复数系内,负数才可以开平方。负数的平方根为一对共轭纯虚数。
规定:0的算术平方根为0。
先计算:√81=9,
而一个正数的平方根有两个,
即9的平方根有两个,±√3,
所以√81的平方根是±3。
因为±9的平方是81所以81的平方根是±9