√8=2√2。
√8=√(4*2)=√(2的平方*2), 因为√(2的平方)=2,原式=2√2。2√2是最简根式,不需再化简。
又如√12=√(2平方*3)=2√3。
√24=√(2平方*6)=2√6。
√27=√(3平方*3)=3√3。
完全平方数可以从平方根下提出,不是完全平方数,提不出来。
扩展资料:
在实数范围内,任一实数的奇数次方根有且仅有一个,例如8的3次方根为2,-8的3次方根为-2 。
正实数的偶数次方根是两个互为相反数的数,例如16的4次方根为2和-2。
负实数不存在偶数次方根;零的任何次方根都是零。
在复数范围内,无论n是奇数或偶数,任一个非零的复数的n次方根都有n个。
根号的运算法则:
1.√a+√b=√b+√a。
2.√a-√b=-(√b-√a)。
3.√a*√b=√(a*b)。
4.√a/√b=√(a/b)。
参考资料来源:百度百科-开方
√8=2√2。
√8=√(4*2)=√(2的平方*2), 因为√(2的平方)=2,原式=2√2。2√2是最简根式,不需再化简。
又如√12=√(2平方*3)=2√3。
√24=√(2平方*6)=2√6。
√27=√(3平方*3)=3√3。
完全平方数可以从平方根下提出,不是完全平方数,提不出来。
扩展资料:
在实数范围内,任一实数的奇数次方根有且仅有一个,例如8的3次方根为2,-8的3次方根为-2 。
正实数的偶数次方根是两个互为相反数的数,例如16的4次方根为2和-2。
负实数不存在偶数次方根;零的任何次方根都是零。
常用平方数:
1² = 1, 2² = 4 ,3² = 9, 4² = 16, 5² = 25, 6² = 36 ,7² = 49 ,8² = 64 ,9² = 81 ,10² = 100。
11² = 121, 12² = 144 ,13² = 169 ,14² = 196 ,15² = 225, 16² = 256, 17² = 289 ,18² = 324, 19² = 361 ,20² = 400。
21² = 441 ,22² = 484, 23² = 529 ,24² = 576, 25² = 625 ,26² = 676, 27² = 729 ,28² = 784 ,29² = 841, 30² = 900。
根号8等于2√2。
解:因为对8进行质因数分解可得,
8=2x2x2=(2x2)x2=2^2*2。
那么√8=√(2^2*2)=(√(2^2))*√2=2√2。
及√8化简等于2√2。
扩展资料:
1、最简根式的条件
(1)被开方数指数和根指数互质;
(2)被开方数的每一因式的指数都小于根指数;
(3)被开方数不含分母。
2、根式的性质
当a>0,b>0时,√(ab)=√a*√b。
参考资料来源:百度百科-最简根式
√8= √(2²x2)= √2²x√2=2√2