解:∫(-π/4到π/4) (cosx)²/[1+e^(-x)]dx
=∫(-π/4到0) (cosx)²/[1+e^(-x)]dx+∫(0到π/4) (cosx)²/[1+e^(-x)]dx
对第一个积分式,令t=-x代换下,有:
∫(-π/4到0) (cosx)²/[1+e^(-x)]dx ( t=-x,则dx=-dt)
=∫(π/4到0) (cost)²/[1+e^t](-dt)
=∫(0到π/4) (cost)²/[1+e^t]dt
=∫(0到π/4) (cosx)²/[1+e^x]dx
故:
原积分式
=∫(0到π/4) (cosx)²/[1+e^x]dx+∫(0到π/4) (cosx)²/[1+e^(-x)]dx
=∫(0到π/4) [(cosx)²/(1+e^x)+(cosx²)e^x/(e^x+1)]dx
=∫(0到π/4) (1+cos2x)/2dx
=(x+1/2*sin2x)|(0到π/4)
=π/4+1/2